<h3>
Answer:</h3>
Anion present- Iodide ion (I⁻)
Net ionic equation- Ag⁺(aq) + I⁻(aq) → AgI(s)
<h3>
Explanation:</h3>
In order to answer the question, we need to have an understanding of insoluble salts or precipitates formed by silver metal.
Additionally we need to know the color of the precipitates.
Some of insoluble salts of silver and their color include;
- Silver chloride (AgCl) - white color
- Silver bromide (AgBr)- Pale cream color
- Silver Iodide (AgI) - Yellow color
- Silver hydroxide (Ag(OH)- Brown color
With that information we can identify the precipitate of silver formed and identify the anion present in the sample.
- The color of the precipitate formed upon addition of AgNO₃ is yellow, this means the precipitate formed was AgI.
- Therefore, the anion that was present in the sample was iodide ion (I⁻).
- Thus, the corresponding net ionic equation will be;
Ag⁺(aq) + I⁻(aq) → AgI(s)
hydrogen-like ion is an ion containing only one electron. The energy of the electron in a hydrogen-like ion is given by:
En = −(2.18 × 10^−18J) Z^2 ( 1/n^2 )
where n is the principal quantum number and Z is the atomic number of the element. Plasma is a state of matter consisting of positive gaseous ions and electrons. In the plasma state, a mercury atom could be stripped of its 80 electrons and therefore could exist as Hg80+. Use the equation above to calculate the energy required for the last ionization step.hydrogen-like ion is an ion containing only one electron. The energy of the electron in a hydrogen-like ion is given by:
En = −(2.18 × 10^−18J) Z^2 ( 1/n^2 )
where n is the principal quantum number and Z is the atomic number of the element. Plasma is a state of matter consisting of positive gaseous ions and electrons. In the plasma state, a mercury atom could be stripped of its 80 electrons and therefore could exist as Hg80+. Use the equation above to calculate the energy required for the last ionization step.hydrogen-like ion is an ion containing only one electron. The energy of the electron in a hydrogen-like ion is given by:
En = −(2.18 × 10^−18J) Z^2 ( 1/n^2 )
where n is the principal quantum number and Z is the atomic number of the element. Plasma is a state of matter consisting of positive gaseous ions and electrons. In the plasma state, a mercury atom could be stripped of its 80 electrons and therefore could exist as Hg80+. Use the equation above to calculate the energy required for the last ionization step.
<em><u>pl</u></em><em><u>ease</u></em><em><u> mark</u></em><em><u> me</u></em><em><u> as</u></em><em><u> brainliest</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
<em><u>f</u></em><em><u>ollow</u></em><em><u> me</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Answer:
<h3>A. Epimers </h3>
Explanation:
<h2>Hope it help ❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️</h2>
A radioactive element has an unstable nucleus that emits particles in the form of alpha, beta, or gamma radiation. A stable element has a nucleus that does not emit such particles
Answer:
.
Explanation
In HX , X is more electronegative than Y so HX will ionise more because of ionic bond between H and X . On the other hand H₂Y will be less polar as compared to HX so it will ionise to a lesser extent . Hence Ka will be more for HX . Ka represents the degree of ionisation of acid . Higher the ionisation , higher is the value of Ka . H₂Y which is less polar will ionise less and hence it will have lesser value of Ka .
Hence H₂Y will have value of 10⁻⁷ and HX will have value of ka equal to 10⁹ .