Answer:
h = 23.716 m
Explanation:
Given that,
The time taken by the stone to hit the water is, t = 2.2 s
Height of the bridge above the ground, h = ?
The distance that the body will fall through the time is given by the formula
S = 1/2 gt² m
Where,
g - acceleration due to gravity
Substituting the values in the above equation
S = 1/2 x 9.8 m/s² x (2.2 s)²
= 23.716 m
Therefore, the height of the bridge from the surface of the water is h = 23.716 m
1. it is difficult to search for it . Because infrared rays will never penetrate through earth atmosphere.
2. we are unaware of how it looks like and we only know it is red and will glow . A damaged star also looks like this.
3. Dust also makes is hard to detect Dyson spheres . So we will get confused between Dyson sphere and a star surrounded by dust.
Answer:
I have no clue what's really going on I'm just here to get answer maybe I will just try to get an answer but I have no clue I'm sorry I am confused and dint really know what to do here.
Just took the test and the answer is <span>C. 1,314,718.
</span>
Answer:
It is 52° below the celestial equator.
Explanation:
The declination is the angle in degrees measured north (+) or south (-) of the an imaginary line called the celestial equator.
The celestial equator is a projection of the earth's equator on the celestial sphere. imaginary
The star named Canopus has a declination of approximately –52°.
Since the angle is negative, this shows that it is south or below the celestial equator and at 52° south of the celestial equator.
Thus, the star named Caponus is 52° below the celestial equator.