Answer:
Hello your question has some missing parts attached below is the complete question
answer : 4 μm
Explanation:
since the scale bar works the same way as a scale on a map , each bar will therefore represent 1 μm and the mature parent cell's is about 4 times the labeled value hence the Mature parent cell diameter will approximately be : 4 μm
Answer b protons and electrons
Answer:
The puck moves a vertical height of 2.6 cm before stopping
Explanation:
As the puck is accelerated by the spring, the kinetic energy of the puck equals the elastic potential energy of the spring.
So, 1/2mv² = 1/2kx² where m = mass of puck = 39.2 g = 0.0392 g, v = velocity of puck, k = spring constant = 59 N/m and x = compression of spring = 1.3 cm = 0.013 cm.
Now, since the puck has an initial velocity, v before it slides up the inclined surface, its loss in kinetic energy equals its gain in potential energy before it stops. So
1/2mv² = mgh where h = vertical height puck moves and g = acceleration due to gravity = 9.8 m/s².
Substituting the kinetic energy of the puck for the potential energy of the spring, we have
1/2kx² = mgh
h = kx²/2mg
= 59 N/m × (0.013 m)²/(0.0392 kg × 9.8 m/s²)
= 0.009971 Nm/0.38416 N
= 0.0259 m
= 2.59 cm
≅ 2.6 cm
So the puck moves a vertical height of 2.6 cm before stopping
<h2>
The seagull's approximate height above the ground at the time the clam was dropped is 4 m</h2>
Explanation:
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Time, t = 3 s
Substituting
s = ut + 0.5 at²
s = 0 x 3 + 0.5 x 9.81 x 3²
s = 44.145 m
The seagull's approximate height above the ground at the time the clam was dropped is 4 m
First, find how many copper atoms make up the ball:
moles of atoms = (49.3 g) / (63.5 g per mol of atoms) = 0.<span>77638</span><span>mol
</span> # of atoms = (0.77638 mol) (6.02 × 10^23 atoms per mol) = 4.6738*10^23<span> atoms </span>
<span> There is normally one electron for every proton in copper. This means there are normally 29 electrons per atom:
</span> normal # electrons = (4.6738 × 10^23 atoms) (29 electrons per atom) = <span>
<span>1.3554</span></span><span>× 10^25 electrons
</span>
<span> Currently, the charge in the ball is 2.0 µC, which means -2.0 µC worth of electrons have been removed.
</span><span> # removed electrons = (-2.0 µC) / (1.602 × 10^-13 µC per electron) = 1.2484 × 10^13 electrons removed
</span><span> # removed electrons / normal # electrons = </span>
<span>(1.2484 × 10^13 electrons removed) / (1.3554 × 10^25 electrons) = 9.21 × 10^-13 </span>
<span> That's 1 / 9.21 × 10^13 </span>