Answer:
Conic Sections
a conic section is a curve which is obtained when a surface performs an intersection with a plane. The types of conic sections include hyperbola, parabola and ellipse. A circle can also be considered as a conic section.
Conic Solids on the other hand are the set of points on any segment between a region and a point which is not present in the plane of the base. They are solids with one base.
Answer:
For the two you haven't answered: (Drag greater than thrust, lift greater than weight) It will accelerate backwards (decelerate) and upwards
(Lift greater than weight, thrust greater than drag) accelerate upwards and forwards.
Answer:
- <em><u> Land, labor, and capital </u></em>
Explanation:
The <em>factors of production </em>are the resources that are used to produce goods and services.
By definition resources are scarce.
<em>Land</em> includes everything that comes from the land, that can be used as raw material to produce other materials; for instance, water, minerals, wood.
<em>Labor</em> is the work done by anybody, not just at a factory but at any enterpise that produce a good or a service. For instance, the work done by a person in a bank or a restaurant.
<em>Capital</em> is the facilites (buildings), machinery, equipments, tools that the persons use to produce goods or services. For instance, a computer, a chemical reactor, or a pencil.
Nowadays, also entrepreneurship is included as a <em>factor of production</em>, since it is the innovative skill of the entrepeneurs to combine land, labor and capital what permit the production of good and services.
Answer:
At the point when the quantity of bit strings is not exactly the quantity of processors, at that point a portion of the processors would stay inert since the scheduler maps just part strings to processors and not client level strings to processors. At the point when the quantity of part strings is actually equivalent to the quantity of processors, at that point it is conceivable that the entirety of the processors may be used all the while. Be that as it may, when a part string obstructs inside the portion (because of a page flaw or while summoning framework calls), the comparing processor would stay inert. When there are more portion strings than processors, a blocked piece string could be swapped out for another bit string that is prepared to execute, in this way expanding the use of the multiprocessor system.When the quantity of part strings is not exactly the quantity of processors, at that point a portion of the processors would stay inert since the scheduler maps just bit strings to processors and not client level strings to processors. At the point when the quantity of bit strings is actually equivalent to the quantity of processors, at that point it is conceivable that the entirety of the processors may be used at the same time. Be that as it may, when a part string hinders inside the piece (because of a page flaw or while summoning framework calls), the relating processor would stay inert. When there are more portion strings than processors, a blocked piece string could be swapped out for another bit string that is prepared to execute, along these lines expanding the usage of the multiprocessor framework.
Answer:
Q= 4.6 × 10⁻³ m³/s
actual velocity will be equal to 8.39 m/s
Explanation:
density of fluid = 900 kg/m³
d₁ = 0.025 m
d₂ = 0.05 m
Δ P = -40 k N/m²
C v = 0.89
using energy equation

under ideal condition v₁² = 0
v₂² = 88.88
v₂ = 9.43 m/s
hence discharge at downstream will be
Q = Av
Q =
Q =
Q= 4.6 × 10⁻³ m³/s
we know that

hence , actual velocity will be equal to 8.39 m/s