Answer:
Decreases by
times
Explanation:
The intensity of a sound is defined as the energy of the sound that is flowing in an unit time through the unit area which is in the direction that is perpendicular to the direction of the sound waves movement.
The intensity of energy is described by the inverse square law. It states that the intensity varies inversely with the distance square of the distance.
In other words, the sound intensity decreases as inversely proportional to the squared of the distance. i.e. 
In the context when the distance was 3 m, the intensity of the sound was = 
But when the distance became 6 cm or 0.06 m, the sound intensity decreases by = 
=
times
Properties of electromagnetic radiation and photons. ... we find the types of energy that are lower in frequency ( and thus longer in wavelength) than visible light. Seeee
Answer:
(a) 0.3778 eV
(b) Ratio = 0.0278
Explanation:
The Bohr's formula for the calculation of the energy of the electron in nth orbit is:

(a) The energy of the electron in n= 6 excited state is:


Ionisation energy is the amount of this energy required to remove the electron. Thus, |E| = 0.3778 eV
(b) For first orbit energy is:




Ratio = 0.0278
Answer: A
<u>Explanation:</u>
NOTES:
d = 650 meters
t = 10 seconds
**********************************
v = d/t
= 650 meters/10 seconds
= 65 meters/second
You find yourself in a place that is unimaginably <u>hot and dense</u>. A r<u>apidly changing</u><u> gravitational field</u><u> </u>randomly warps space and time. Gripped by these huge fluctuations, you notice that there is but a single, unified force governing the universe, you are in the early universe before the Planck time.
<h3>What is Planck time?</h3>
The Planck time is approximately<u> 10^-44 seconds</u>. The smallest time interval, or "zeptosecond," that has so far been measured is <u>10^-21 seconds</u>. A photon traveling at the speed of light would need one Planck time <u>to traverse a distance of one </u><u>Planck length</u>.
<h3>What is Planck length?</h3>
Planck units are a set of measuring units used only in particle physics and physical cosmology. They are defined in terms of <u>four universal </u><u>physical constants</u> in such a way that when expressed in terms of these units, these physical constants have the numerical value 1. These units are a system of natural units because its definition is <u>based on characteristics of nature</u>, more especially the characteristics of free space, rather than a selection of prototype object, as was the case with Max Planck's original 1899 proposal. They are pertinent to the study of unifying theories like quantum gravity.
To learn more about Plank time:
brainly.com/question/23791066
#SPJ4