Answer:
In my mind when I hear the word momentum it comes that it is the product of mass and velocity.
The calculated mutual inductance is 8.544 x 10⁻⁵ H.
Two coils have a mutual inductance of 1 henry when emf of 1 volt is induced in coil 1 and when the current flowing through coil 2 is changing at the rate of one ampere per second.
Length of the solenoid= 5.0 cm
Area of cross-section=1.0 cm²
no of spaced turns=300 turns
turns of insulated wire=180 turns
Mutual inductance (M) = μ₀μr N1N2 A/ L
=(4xπx 10⁻⁷) x (6.3 x 10⁻³) x 300 x 180 x 1/ 5
=79.12 x 10⁻¹⁰ x 54000 / 5
=8.544 x 10⁻⁵ H
hence, the mutual inductance is 8.544 x 10⁻⁵ H.
Learn more about Mutual inductance here-
brainly.com/question/14014588
#SPJ4
Answer:
A
Explanation:
The most important part about this is not only that objects pull on each other, but that two objects attract each other with a force that is proportional to the product of their masses and inversely proportional to the square of the distance between them. This is known as Newton's law of universal gravitation.
Explanation:
Effective nuclear charge is defined as he net positive charge experienced by an electron in an atom. It is termed "effective" because the shielding effect of electrons prevents higher orbital electrons from experiencing the full nuclear charge of the nucleus due to the repelling effect of inner-layer electrons.
The 1s is the closest shell to the nucleus of an therefore maximum nuclear charge is experienced. The formula for effective nuclear charge is:
Zeff = Z – S
where
Z = the number of protons in the nucleus, and
S = the shielding constant, the average number of electrons between the nucleus and the electron.
Hence, the energy required to remove an electron from the 1s orbital is the strongest.