1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
masya89 [10]
2 years ago
11

When looking at a graph what are the first 3 things you should do?

Physics
2 answers:
NNADVOKAT [17]2 years ago
6 0
See if x,y points are negative or positive then write them down
Valentin [98]2 years ago
4 0

Answer: Look where the points are.

Explanation:

You might be interested in
Which value is most likely to be the pH of a salt that is formed by the reaction of a strong acid and a weak base?
Mice21 [21]
In a hydrolysis reaction between a strong acid and a weak base, the salt formed will have a pH less than 7. By virtue of this phenomenon between <span>weak bases and strong acids</span>, the anion of the strong acid will fail to attract the hydrogen ion<span>, while the cation from the weak base will donate a </span>proton<span> to the water forming a hydronium ion</span><span>.
</span>
7 0
3 years ago
A 72-kg man stands on a spring scale in an elevator. Starting from rest, the elevator ascends, attaining its maximum speed of 1.
Shalnov [3]

Answer:

Explanation:

During the first .8 s , the elevator is under acceleration . It starts from initial velocity u = 0 , final velocity v = 1.2 m /s , time = .8 s

v = u + at

1.2 = 0 +  .8 a

a = 1.2 / .8

= 1.5 m /s²

During the acceleration in upward direction , let reaction force of ground on man be R .

Net force on man = R - mg

Applying Newton's 2 nd law

R - mg = ma

R = m ( g + a )

= 72 ( 9.8 + 1.5 )

= 813.6 N .

This reaction force will be measured by spring scale , so reading of spring scale will be 813.6 N .

3 0
3 years ago
This force can either push the block upward at a constant velocity or allow it to slide downward at a constant velocity. The mag
Dmitry [639]

Answer:

Part a)

F = 135.7 N

Part b)

F = 62.5 N

Explanation:

Part a)

If block is sliding up then net force must be zero and friction will be in opposite to the direction of motion of the block

Fcos\theta = mg + F_f

Fsin\theta = F_n

so we have

Fcos\theta = mg + \mu(Fsin\theta)

F(cos\theta - \mu sin\theta) = mg

F = \frac{mg}{cos\theta - \mu sin\theta}

F = \frac{55}{cos50 - 0.310(sin50)}

F = 135.7 N

Part b)

If block is sliding down then net force must be zero and friction will be in opposite to the direction of motion of the block

Fcos\theta = mg - F_f

Fsin\theta = F_n

so we have

Fcos\theta = mg - \mu(Fsin\theta)

F(cos\theta + \mu sin\theta) = mg

F = \frac{mg}{cos\theta + \mu sin\theta}

F = \frac{55}{cos50 + 0.310(sin50)}

F = 62.5 N

6 0
3 years ago
Why is the monolith el capitan in yosemite national park more resistant to erosion than other igneous plutons in the park?
Harman [31]
Because it is intact and unfractured
4 0
3 years ago
A truck using a rope to tow a 2230-kg car accelerates from rest to 13.0 m/s in a time of 15.0s. How strong must the rope be? μk
Leokris [45]

Answer:

The rope must have a force of 10084,21 N

Explanation

Acceleration calculation

The car acceleration is equal to the acceleration of the truck

ac: car acceleration\frac{m}{s^{2} }

at: truck acceleration\frac{m}{s^{2} })

ac = at= \frac{vf-vi}{t-ti}  equation(1)

Known information:

vi = Initial speed = 0, ti = initial time = 0

vf = Final speed = 13 \frac{m}{s}, t = final time =5 s

We replaced the known information in the equation(1):

ac = at = \frac{13-0}{15-0}

ac=ac=\frac{13}{15}  \frac{m}{s}

Dynamic analysis

The forces acting on the car are the following:

Wc: Car weight

N: normal force, road force on the car

Ff: Friction force

T: Force of tension

Car weight calculation:

Wc=mc*g

mc = Car mass = 2230kg

g = Gravity acceleration=9.8 \frac{m}{s^{2} }

Wc= 2230*9.8

Wc=21854 N

Normal force calculation:

Newton's first law

sum Fy= 0

N-W=0

N=W

N=21854 N

Friction force calculation (Ff):

We have the formula to calculate the friction force:

Ff = μk * N  Equation (3)

μk kinetic coefficient of friction

We know that μk = 0.373and N= 21854N ,then:

Ff=0.373*21854

Ff=8151.54 N

Calculation of the tension force in the rope (T):

Newton's Second law

sum Fx= mc*ac

T-Ff=mc*ac

T=2230(\frac{13}{15}) + 8151.54

T=10084,21 N

Answer: The rope must have a force of 10084,21 N

8 0
3 years ago
Other questions:
  • What is the acceleration of a ball traveling horizontally with an initial velocity of 20 meters/second and, 2.0 seconds later, a
    10·2 answers
  • A mass m0 is attached to a spring and hung vertically. The mass is raised a short distance in the vertical direction and release
    8·1 answer
  • A ball is thrown upward in the air, and its height above the ground after t seconds is H ( t ) = 63 t − 16 t 2 feet. Find the ti
    7·1 answer
  • True or false? <br> objects that are sitting still have kinetic energy
    10·1 answer
  • The logarithm of x, written log(x), tells you the power to which you would raise 10 to get x. So, if y=log(x), then x=10^y. It i
    14·1 answer
  • How much work are you doing if you push on a 40 N rock that won't move?
    6·1 answer
  • How would you find the speed of a person who walked
    12·1 answer
  • Give an example of the of conservation of momentum
    10·1 answer
  • On the graph below, the line crosses the x axis on a velocity versus time
    7·1 answer
  • What causes diffraction that results in a fuzzy glow around a full moon?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!