Distance is how far something moves in a specific amount of time.
Answer:
Δy= 5,075 10⁻⁶ m
Explanation:
The expression that describes the interference phenomenon is
d sin θ = (m + ½) λ
As the observation is on a distant screen
tan θ = y / x
tan θ= sin θ/cos θ
As in ethanes I will experience the separation of the vines is small and the distance to the big screen
tan θ = sin θ
Let's replace
d y / x = (m + ½) λ
The width of a bright stripe at the difference in distance
y₁ = (m + ½) λ x / d
m = 1
y₁ = 3/2 λ x / d
Let's use m = 1, we look for the following interference,
m = 2
y₂ = (2+ ½) λ x / d
The distance to the screen is constant x₁ = x₂ = x₀
The width of the bright stripe is
Δy = λ x / d (5/2 -3/2)
Δy = 630 10⁻⁹ 2.90 /0.360 10⁻³ (1)
Δy= 5,075 10⁻⁶ m
Answer:
hi sandra!!
Explanation:
the number 3 is the correct!!
The Aurora is an incredible light show caused by collisions between electrically charged particles released from the sun that enter the earth’s atmosphere and collide with gases such as oxygen and nitrogen. The lights are seen around the magnetic poles of the northern and southern hemispheres.
Auroras that occur in the northern hemisphere are called ‘Aurora Borealis’ or ‘northern lights’ and auroras that occur in the southern hemisphere are called ‘Aurora Australis’ or ‘southern lights’.
Auroral displays can appear in many differents colours, but green is the most common. Colours such as red, yellow, green, blue and violet are also seen occasionally. The auroras can appear in many forms, from small patches of light that appear out of nowhere to streamers, arcs, rippling curtains or shooting rays that light up the sky with an incredible glow.
Answer:
E = 3.049 N/C
Explanation:
Induced electric field = e/2 *(pi) *r
Induced electric field = e /(3.14 *19.5) - Eq (1)
e = (pi)r^2*B/t
= 3.14 * (19.5/2*100)^2 * 0.50 T/ 0.1
= 1.867 V
Substituting this value in equation 1, we get –
E = 1.867 V/(3.14 *19.5/100)
E = 3.049 N/C