Answer:
Condition A
Heat flux is 1400 W/M^2
Condition B
Heat flux is 12800 w/m^2
Explanation:
Given that:
is given as 30 degree celcius
condition A
Air temperature = - 5 degree c
convection coefficient h = 40 w/m^2. k
condition A
water temperature = 10 degree c
convection coefficient = 800 w/m^2.k
Answer:
Check the explanation
Explanation:
Energy alance of 2 closed systems: Heat from CO2 equals the heat that is added to air in
1x0.723x=3x0.780x ⇒ = 426.4 °K
The initail volumes of the gases can be determined by the ideal gas equation of state,
= = 0.201
The equilibrium pressure of the gases can also be obtained by the ideal gas equation
= 1x(8.314 28.97)x426.4+3x(8.314 44)x426.4
(0.201+1.275)
= 246.67 KPa = 2.47 bar
Answer:
Para x=0:
Para x=30 cm:
Explanation
Podemos utilizar la ley de Fourier par determinar el flujo de calor:
(1)
Por lo tanto debemos encontrar la derivada de T(x) con respecto a x primero.
Usando la ley de potencia para la derivda, tenemos:
Remplezando esta derivada en (1):
Para x=0:
Para x=30 cm:
Espero que te haya ayudado!
Answer:
88750 N
Explanation:
given data:
plastic deformation σy=266 MPa=266*10^6 N/m^2
cross-sectional area Ao=333 mm^2=333*10^-6 m^2
solution:
To determine the maximum load that can be applied without
plastic deformation (Fy).
Fy=σy*Ao
=88750 N
Answer : The final velocity of the ball is, 12.03 m/s
Explanation :
By the 3rd equation of motion,
where,
s = distance covered by the object = 6.93 m
u = initial velocity = 2.99 m/s
v = final velocity = ?
a = acceleration =
Now put all the given values in the above equation, we get the final velocity of the ball.
Thus, the final velocity of the ball is, 12.03 m/s