Answer:
1) the final temperature is T2 = 876.76°C
2) the final volume is V2 = 24.14 cm³
Explanation:
We can model the gas behaviour as an ideal gas, then
P*V=n*R*T
since the gas is rapidly compressed and the thermal conductivity of a gas is low a we can assume that there is an insignificant heat transfer in that time, therefore for adiabatic conditions:
P*V^k = constant = C, k= adiabatic coefficient for air = 1.4
then the work will be
W = ∫ P dV = ∫ C*V^(-k) dV = C*[((V2^(-k+1)-V1^(-k+1)]/( -k +1) = (P2*V2 - P1*V1)/(1-k)= nR(T2-T1)/(1-k) = (P1*V1/T1)*(T2-T1)/(1-k)
W = (P1*V1/T1)*(T2-T1)/(1-k)
T2 = (1-k)W* T1/(P1*V1) +T1
replacing values (W=-450 J since it is the work done by the gas to the piston)
T2 = (1-1.4)*(-450J) *308K/(101325 Pa*650*10^-6 m³) + 308 K= 1149.76 K = 876.76°C
the final volume is
TV^(k-1)= constant
therefore
T2/T1= (V2/V1)^(1-k)
V2 = V1* (T2/T1)^(1/(1-k)) = 650 cm³ * (1149.76K/308K)^(1/(1-1.4)) = 24.14 cm³
Answer:
Microsoft is the correct answer
Answer:
The surface ocean currents have a strong effect on Earth's climate. ... However, these areas do not constantly get warmer and warmer, because the ocean currents and winds transport the heat from the lower latitudes near the equator to higher latitudes near the poles.
Answer:
Explanation:
Products of oil in our everyday life:
(1) Petro-Chemical Feedstock: These are by product of Refining of Oil which it is used extensively to make PET bottles, Paints, Polyester Shirts, Pocket combs e.t.c
(2) Asphalt : Used extensively to make Motor Road, highways
(3) Plastics : we use plastics in our everyday life, this is also a product of Refining of crude oil e.g PVC, Telephone casing, Tapes e.t.c
(4) Lubricating Oil/Grease : This is another product from crude oil Fractional Distillation.
(5) Propane/ Cooking Gas: This is also a product from oil which is used in our everyday life for cooking, grilling etc.