1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naddik [55]
3 years ago
11

Select the creative imaging fields that require knowledge of programming.

Engineering
1 answer:
denis23 [38]3 years ago
8 0
Video game designer for sure
You might be interested in
All MOS devices are subject to damage from:________
Alchen [17]

Answer:

  d. all of these

Explanation:

Electrostatic discharge will generally produce excess voltage in a local area that results in excessive current and excessive heat. It will blast a crater in an MOS device, or melt bond wires, or cause damage of other sorts. In short, MOS devices are subject to damage from "all of these."

6 0
3 years ago
The normal stress at gage H calculated in Part 1 includes four components: an axial component due to load P, σaxial, P, a bendin
Degger [83]

Answer:

hello your question has some missing information attached to the answer is the missing component

Answer : αaxial,p = -6.034 ksi ( compressive )

             αbend,p = 19.648 ksi ( tensile )

Explanation:

αaxial, p = \frac{-p}{A}   equation 1

αbend, p = \frac{(P*A)*\frac{d}{2} }{I_{z} } equation 2

P = load = 35 kips

A = area of column = 5.8 in^{2}

d = column cross section depth = 9.5 in

I_{Z} = 55.0 in^{4}

Hence equation 1 becomes

αaxial,p = -35 / 5.8 = - 6.034 ksi ( compressive )

equation 2 becomes

αbend, p = \frac{(35*6.5)(\frac{9.2}{2}) }{55} = + 19.648 ksi ( tensile )

7 0
3 years ago
Assume a steel pipe of inner radius r1= 20 mm and outer radius r2= 25 mm, which is exposed to natural convection at h = 50 W/m2.
Mekhanik [1.2K]

Answer:

98,614.82 W/m²

Explanation:

Q = 2\pi hL(\frac{T_2-T_1}{Ln\frac{r_2}{r_1}})

Where;

Q = the amount of heat loss from the pipe

h =  the heat transfer coefficient of the pipe = 50 W/m².K

T₁ = the ambient temperature of the pipe = 30⁰C

T₂  = the outside temperature of the pipe = 100⁰C

L= the length of pipe

r₁ = inner radius of the pipe = 20mm

r₂ = outer radius of the pipe = 25mm

To determine the amount of heat loss from the pipe per unit length

From the equation above

\frac{Q}{L} = 2\pi h(\frac{T_2-T_1}{Ln\frac{r_2}{r_1}})

\frac{Q}{L} = 2\pi* 50(\frac{100-30}{Ln\frac{25}{20}})

\frac{Q}{L} = 314.159(\frac{70}{0.223})

\frac{Q}{L} = 314.159(313.901) = 98,614.82 W/m²

3 0
3 years ago
a metal rod 24mm diameter and 2m long is subjected to an axial pull of 40 kN. If the rod is 0.5mm, then find the stress-induced
ozzi

Answer:

i dont know but i will take the points tho hahah

Explanation:

8 0
2 years ago
Explain the difference between thermoplastics and thermosets giving structure property correlation.
Misha Larkins [42]

Answer:

Explanation:

Thermosetting polymers are infusible and insoluble polymers. The reason for such behavior is that the chains of these materials form a three-dimensional spatial network, intertwining with strong equivalent bonds. The structure thus formed is a conglomerate of interwoven chains giving the appearance and functioning as a macromolecule, which as the temperature rises, simply the chains are more compacted, making the polymer more resistant to the point where it degrades.

Macromolecules are molecules that have a high molecular mass, formed by a large number of atoms. Generally they can be described as the repetition of one or a few minimum units or monomers, forming the polymers. In contrast, a thermoplastic is a material that at relatively high temperatures, becomes deformable or flexible, melts when heated and hardens in a glass transition state when it cools sufficiently. Most thermoplastics are high molecular weight polymers, which have associated chains through weak Van der Waals forces (polyethylene); strong dipole-dipole and hydrogen bond interactions, or even stacked aromatic rings (polystyrene). Thermoplastic polymers differ from thermosetting polymers or thermofixes in that after heating and molding they can overheat and form other objects.

Thermosetting plastics have some advantageous properties over thermoplastics. For example, better resistance to impact, solvents, gas permeation and extreme temperatures. Among the disadvantages are, generally, the difficulty of processing, the need for curing, the brittle nature of the material (fragile) and the lack of reinforcement when subjected to tension. But even so in many ways it surpasses the thermoplastic.

The physical properties of thermoplastics gradually change if they are melted and molded several times (thermal history), these properties are generally diminished by weakening the bonds. The most commonly used are polyethylene (PE), polypropylene (PP), polybutylene (PB), polystyrene (PS), polymethylmethacrylate (PMMA), polyvinylchloride (PVC), ethylene polyterephthalate (PET), Teflon (or polytetrafluoroethylene, PTFE) and nylon (a type of polyamide).

They differ from thermosets or thermofixes (bakelite, vulcanized rubber) in that the latter do not melt when raised at high temperatures, but burn, making it impossible to reshape them.

Many of the known thermoplastics can be the result of the sum of several polymers, such as vinyl, which is a mixture of polyethylene and polypropylene.

When they are cooled, starting from the liquid state and depending on the temperatures to which they are exposed during the solidification process (increase or decrease), solid crystalline or non-crystalline structures may be formed.

This type of polymer is characterized by its structure. It is formed by hydrocarbon chains, like most polymers, and specifically we find linear or branched chains

4 0
3 years ago
Other questions:
  • simply supported beam is subjected to a linearly varying distributed load ( ) 0 q x x L 5 q with maximum intensity 0 q at B. The
    6·1 answer
  • When a group of firms chooses to work together to turn a non-monopoly market into a monopoly market by securing formal agreement
    8·1 answer
  • A long rod of 60-mm diameter and thermophysical properties rho=8000 kg/m^3, c=500J/kgK, and k=50 W/mK is initally at a uniform t
    8·1 answer
  • Users say that the game is interesting to look at but the music gets annoying
    9·1 answer
  • What are wheel cylinders used for?
    6·1 answer
  • Based on the scenario, which type of engineering identifies Greg's role in Ethiopia?
    15·1 answer
  • Stakeholders are people or organizations who do what?
    10·2 answers
  • 1. What's the maximum overall length of the part?<br> 2. What material is used to fabricate the part
    5·1 answer
  • Please help I am give brainiliest
    9·1 answer
  • If a 110-volt appliance requires 20 amps, what is the total power consumed?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!