Answer:
7056 kJ
Explanation:
Given that,
Mass of a ship roller coaster is 36,000 kg.
It reaches a height of 20 m off the ground
We need to find the gravitational potential energy does it have. The formula for the gravitational potential energy ios given by :
E = mgh
g is acceleration due to gravity
E = 36,000 kg × 9.8 m/s² × 20 m
= 7056000 J
or
E = 7056 kJ
So, it will have 7056 kJ of gravitational potential energy.
To determine your line of latitude , you would need to know the angle your location (line) makes with the equatorial plane at earth's center.
<h3>What is Line of latitude?</h3>
This is also referred to as parallels and it is defined as the imaginary lines that divide the Earth. They run from east to west and are used to specify the north and south sides of the Earth.
To determine the line of latitude , it is imperative to know the angle your location (line) makes with the equatorial plane at earth's center which is therefore the reason why it was chosen as the most appropriate choice.
Read more about Line of latitude here brainly.com/question/523705
#SPJ1
31.3m/s
Explanation:
Given parameters:
Mass of rock = 40kg
Height of cliff = 50m
Unknown:
Speed of rock when it hits ground = ?
Solution:
We are going to use the appropriate motion equation to solve this problem
The rock is falling with the aid of gravitational force. The force is causing it to accelerate with an amount of velocity.
Using;
V² = U² + 2gH
V = unknown velocity
U = initial velocity = O
g = acceleration due to gravity = 9.8m/s²
H = height of fall
since the initial velocity of the bodyg is 0
V² = 2gH
V= √2gH = √2 x 9.8 x 50 = 31.3m/s
learn more:
Velocity brainly.com/question/4460262
#learnwithBrainly
The fastest winds and heaviest rain is found in the eye of the hurricane.
Answer:
N = 177843 sheets
Explanation:
We are given;
Mass;m = 0.0035 kg
Pressure; p = 101325 pa = 101325 N/m²
L = 0.279m
W = 0.216m
The weight of N sheets is N(mg)
Where;
m is the mass of one sheet
N is number of sheets
g is the acceleration due to gravity.
The pressure equals weight divided by the area on which the weight presses:
Thus,
p= F/A = Nmg/(L•W)
Therefore, making N the subject;
N = pLW/(mg)
N = 101325 x 0.279 x 0.216/ (0.0035 x 9.81)
N = 177843