Answer:

Explanation:
The speed of the actor before the collision is found by means of the Principle of Energy Conservation:



The speed after the inelastic collision is obtained by using the Principle of Momentum Conservation:


Lastly, the maximum height is determined by using the Principle of Energy Conservation again:



Answer:
Explanation:
Given:
Initial θ = 0 rad (from rest)
Final θ = 14.3 rad
Time, t = 5 s
B.
Angular velocity, w = dθ / dt
= (14.3 - 0)/5
= 2.86 rad/s
A.
Acceleration, ao = dw/dt
Initial angular velocity, wi = 0 rad/s (from rest)
Final angular velocity, wf = 2.86 rad/s
a = (2.86 - 0)/5
= 0.572 rad/s^2
It should be A.
A ball bouncing is moving so if it’s moving that means it has kinetic energy. It also has potential energy because when it hits the floor it kind of stops so it has potential.
-Hope this helps.
Answer:
A. the total net force is 14
B. the total net force is 15
Explanation:
To solve this problem we will apply the definition of the ideal gas equation, where we will clear the density variable. In turn, the specific volume is the inverse of the density, so once the first term has been completed, we will simply proceed to divide it by 1. According to the definition of 1 atmosphere, this is equivalent in the English system to

The ideal gas equation said us that,
PV = nRT
Here,
P = pressure
V = Volume
R = Gas ideal constant
T = Temperature
n = Amount of substance (at this case the mass)
Then

The amount of substance per volume is the density, then

Replacing with our values,


Finally the specific volume would be

