Answer: C) 0.020 m
Explanation:
Molality of a solution is defined as the number of moles of solute dissolved per kg of the solvent.

where,
n = moles of solute
= weight of solvent in g
Mole fraction of
is =
i.e.
moles of
is present in 1 mole of solution.
Moles of solute
= 
moles of solvent (water) = 1 -
= 0.99
weight of solvent =
Molality =
Thus approximate molality of
in this solution is 0.020 m
The amount of energy released when 0.06 kg of mercury condenses at the same temperature can be calculated using its latent heat of fusion which is the opposite of melting. Latent heat of fusion and melting can be used because they have the same magnitude, but opposite signs. Latent heat is the amount of energy required to change the state or phase of a substance. For latent heat, there is no temperature change. The equation is:
E = m(ΔH)
where:
m = mass of substance
ΔH = latent heat of fusion or melting
According to data, the ΔH of mercury is approximately 11.6 kJ/kg.
E = 0.06kg (11.6 kJ/kg) = 0.696 kJ or 696 J
The answer is D. 697.08 J. Note that small differences could be due to rounding off or different data sources.
The action was him hitting the ball the reaction was the ball moving after being hit
Answer:
In fact, some strong bases can burn the skin as badly as strong acids. Bases feel soapy or slippery because they react with acidic molecules in your skin called fatty acids. ... Like acids, bases change the colors of acid-base indicators, but the colors they produce are different. Bases turn litmus paper blue.