Answer:
0.5188 M or 0.5188 mol/L
Explanation:
Concentration is calculated as <u>molarity</u>, which is the number of moles per litre.
***Molarity is represented by either "M" or "c" depending on your teacher. I will use "c".
The formula for molarity is:
n = moles (unit mol)
V = volume (unit L)
<u>Find the molar mass (M) of potassium hydroxide.</u>

<u>Calculate the moles of potassium hydroxide.</u>


Carry one insignificant figure (shown in brackets).
<u>Convert the volume of water to litres.</u>


Here, carrying an insignificant figure doesn't change the value.
<u>Calculate the concentration.</u>

<= Keep an insignificant figure for rounding
<= Rounded up
<= You use the unit "M" instead of "mol/L"
The concentration of this standard solution is 0.5188 M.
Answer: The answer is salt
Carbon monoxide is dangerous because it binds with hemoglobin in the blood.
Hemoglobin is made up of proteins that bind to iron atoms. The structure of the protein facilitates loose binding of oxygen. On other hand, Carbon monoxide binds very strongly to the iron in hemoglobin. Once carbon monoxide is bonded to hemoglobin, it is very difficult to release. This, eventually results in blood losing it its ability to transport oxygen. Hence, the person will suffocate. Due to this, CO is dangerous.
Answer:
Yes , 5 mole of Iron Oxide has mass of 798.5 g
Explanation:
Formula of iron oxide:

Atomic mass of Fe = 55.84 amu
Atomic mass of O = 15.99 amu
Molar mass of Fe2O3 = 2(atomic mass of Fe) + 3(atomic mass of O)
= 2(55.84) + 3(15.99)
=111.68 + 47.97
= 159.69 g/mol
<u>Molar mass</u> always equal to <u>1 mole</u> of the substance.
1 mole = 159.69 g
5 mole =

= 798.45 g