Answer:
Final temperature of calorimeter is 25.36^{0}\textrm{C}
Explanation:
Molar mass of anethole = 148.2 g/mol
So, 0.840 g of anethole =
of anethole = 0.00567 moles of anethole
1 mol of anethole releases 5539 kJ of heat upon combustion
So, 0.00567 moles of anethole release
of heat or 31.41 kJ of heat
6.60 kJ of heat increases
temperature of calorimeter.
So, 31.41 kJ of heat increases
or
temperature of calorimeter
So, the final temperature of calorimeter = 
Answer:
Phase changes that require a loss in energy are condensation and freezing.
Explanation:
Answer:
26.9 g
81%
Explanation:
The equation of the reaction is;
4 KO2(s) + 2 CO2(g) → 3 O2(g) + 2 K2CO3(s)
Number of moles of KO2= 27.9g/71.1 g/mol = 0.39 moles
4 moles of KO2 yields 2 moles of K2CO3
0.39 moles of KO2 yields 0.39 × 2/4 = 0.195 moles of K2CO3
Number of moles of CO2 = 57g/ 44.01 g/mol = 1.295 moles
2 moles of CO2 yields 2 moles of K2CO3
1.295 moles of CO2 yields 1.295 × 2/2 = 1.295 moles of K2CO3
Hence the limiting reactant is KO2
Theoretical yield = 0.195 moles of K2CO3 × 138.205 g/mol = 26.9 g
Percent yield = actual yield/theoretical yield × 100
Percent yield = 21.8/26.9 × 100
Percent yield = 81%
Answer:
When a magnesium atom reacts with an oxygen atom, magnesium gives up its two valence electrons and becomes a positively charged ion, i.e. a cation, Mg2+ … The cation and the anion will then be attracted to each other by way of the electrostatic force of attraction → an ionic bond is formed.
Explanation:
hope it helps, please mark as brainliest