Answer:
Given Data:
concentration of sewer Csewer = 1.2 g/L
converting into mg/L = Csewer = 1.2 g/L x 1000 mg/g = 1200 mg/L
flow rate of sewer Qsewer = 2000 L/min
concentration of sewer Cstream = 20 mg/L
flow rate of sewer Qstream = 2m3/s
converting Q into L/min = 2m3/s x 1000 x 60 = 120000 L/min
mass diagram is
Answer:
correct option is (A) 0.5
Explanation:
given data
axial column load = 250 kN per meter
footing placed = 0.5 m
cohesion = 25 kPa
internal friction angle = 5°
solution
we know angle of internal friction is 5° that is near to 0°
so it means the soil is almost cohesive soil.
and for a pure cohesive soil
= 0
and we know formula for
is
= (Nq - 1 ) × tan(Ф) ..................1
so here Ф is very less
should be nearest to zero
and its value can be 0.5
so correct option is (A) 0.5
Answer:
8 to 10 times
Explanation:
For dry road
u= 15 mph ( 1 mph = 0.44 m/s)
u= 6.7 m/s
Let take coefficient of friction( μ) of dry road is 0.7
So the de acceleration a = μ g
a= 0.7 x 10 m/s ² ( g=10 m/s ²)
a= 7 m/s ²
We know that
v= u - a t
Final speed ,v=0
0 = 6.7 - 7 x t
t= 0.95 s
For snow road
μ = 0.4
de acceleration a = μ g
a = 0.4 x 10 = 4 m/s ²
u= 30 mph= 13.41 m/s
v= u - a t
Final speed ,v=0
0 = 30 - 4 x t'
t'=7.5 s
t'=7.8 t
We can say that it will take 8 to 10 times more time as compare to dry road for stopping the vehicle.
8 to 10 times
Moisture content is measured in terms of pounds of water per pound of air (lb water/lb air) or grains of water per pound of air (gr. of water/lb air).
Hope this helps❤
Answer:
there's no photo? but I'm willing to help