Answer: Something that has air molecules.
Explanation:
Explanation:
The tear test determines the force required by a material to undergo complete failure when there is already a crack or tear present in it.
With this test we understand a material's resistance to failure when there is already a crack present.
The material which already has a crack is placed in a tensile testing or universal test machine. So, both sides of the material along the crack are pulled until material failure takes place.
Answer:
forward voltage triggering
temperature triggering
dv/dt triggering
light triggering
gate triggering
Then turning off;
Turn off is accomplished by a "negative voltage" pulse between the gate and cathode terminals
Explanation:
hope it helps
Answer:
The correct answers are:
a. % w = 33.3%
b. mass of water = 45g
Explanation:
First, let us define the parameters in the question:
void ratio e =
= 
Specific gravity
=

% Saturation S =
×
=
× 
water content w =
=
a) To calculate the lower and upper limits of water content:
when S = 100%, it means that the soil is fully saturated and this will give the upper limit of water content.
when S < 100%, the soil is partially saturated, and this will give the lower limit of water content.
Note; S = 0% means that the soil is perfectly dry. Hence, when s = 1 will give the lowest limit of water content.
To get the relationship between water content and saturation, we will manipulate the equations above;
w = 
Recall; mass = Density × volume
w = 
From eqn. (2)
= 
∴ 
putting eqn. (6) into (5)
w = 
Again, from eqn (1)

substituting into eqn. (7)

∴ 
With eqn. (7), we can calculate
upper limit of water content
when S = 100% = 1
Given, 
∴
∴ %w = 33.3%
Lower limit of water content
when S = 1% = 0.01

∴ % w = 0.33%
b) Calculating mass of water in 100 cm³ sample of soil (
)
Given,
, S = 50% = 0.5
%S =
×
=
× 
0.50 = 
mass of water = 
Answer:
"Tempering Process" seems to be the appropriate choice.
Explanation:
- Tempering seems to be a method of heat preparation which is mostly used in completely hard materials to increase consistency, strength, durability, and also some decreasing brittleness.
- The tempering method is used to examine good functionality as well as flexural by reducing stiffness again after the substance has indeed been quenched towards its toughest state.