<span>Mass of nitrogen = 14.0067
</span>
Mass of oxygen = 15.9994
In this compound nitrogen = 36.86 /
14.0067 = 2.63
<span>And oxygen = 63.14 / 15.9994 = 3.95 <span>
now we have: N----- 2.63 and O----3.95
by dividing both with the smallest number we get
</span></span>
<span>N-------2.63/2.63 = 1<span>
<span>O-------3.95/2.63 = 1.5
To get whole numbers we multiply both by 2
</span></span></span>
N= 1 x 2 = 2
And O = 1.5 x 2= 3
<span>So, the empirical formula is N</span>₂O₃.
The variable we have to determine for this problem is the time. Since the given information is speed, we have to know the distance so that we can solve for the time. From literature, the distance between the Earth and the moon is 384,400,000 meters. Therefore,
Speed = Distance/Time
Time = Distance/Speed
Time = 384,400,000 m/ 3×10⁸ m/s = 1.28 seconds
Answer:
V₁ = 374.71 mL
Explanation:
Given data:
Initial volume of gas= ?
Initial temperature = 22°C
Final temperature = 86°C
Final volume = 456 mL
Solution:
Initial temperature = 22°C (22+273 = 295 k)
Final temperature = 86°C (86+273 = 359 k)
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₁ = V₂T₁ /T₂
V₁ = 456 mL × 295 K / 359 k
V₁ = 134520 mL.K / 359 k
V₁ = 374.71 mL
Answer:
14 gallons
Explanation:
357 divided by 14 = 25.5 and if you check your answer 14 x 25.5 = 357 (i hope this is right)