Answer:
Length, l = 0.866 meters
Explanation:
Given that,
Frequency of sound, f = 99 Hz
Speed of sound in air, v = 343 m/s
To find,
The length of a wind instrument.
Solution,
The standing wave will gets formed in wind instrument. For the closed tube, the closed tube the frequency is given by :

Where
l is the length of the instrument


l = 0.866 meters
So, the length of a wind instrument is 0.866 meters. Hence, this is the required solution.
Answer:
F = 100 N
Explanation:
The torque is given by the expression
τ = F x r
where bold letters indicate vectors, the magnitude of this expression is
τ = F r sin θ
In general, when tightening a nut, the force is applied perpendicular to the arm, therefore θ = 90 and sin 90 = 1
τ = F r
F = τ / r
calculate
F = 30 / 0.30
F = 100 N
Answer. 30 minutes
Explanation. If he walks 70 m in one minute how long will it take him to walk 2,100 m. Well, this is a simple division problem (you could also use a ratio box).
2100/70= 30. Hope this helps, let me know if it’s correct so others can use it :)
Good luck.
Option C
The fact that voltage can be created by exerting force on a crystal is used in Knock sensor
<u>Explanation:</u>
Any knock to an engine exhibits as a little shake that is distinguished by the knock sensor. This sensor acts by altering the fluctuation to an electrical sign, which is later transferred to the processor mastering the ignition system.
There the variation in quake to the voltage sign modifies the timing improvements on the kindling. The knock sensor is placed on the engine base, cylinder cap or consumption manifold. This is because its purpose is to sense fluctuations affected by engine knock or explosion.
Answer:
The change in the mass of box = 0.01 kg
Volume of air in the polythene bag = Volume of air in the rigid box
Therefore, Volume of air in the box = 0.008 m^3
Now, Density = Mass/ Volume
=> Density = 0.01 / 0.008 = 1.25 Kg / m^3
Explanation:
I looked it up