Answer:
May you post a picture for us to understand?
When a monovalent cation X binds to a divalent anion Y, a compound with the formula
would be formed.
A monovalent cation is an atom that has lost an electron. Hence, such cation has a single positive charge. A monovalent cation X will, thus, be 
A divalent anion is an atom that has gained two electrons. Such anion has 2 negative charge. Thus, divalent Y would be 
Since Y is a divalent anion, it requires 2 electrons in order to successfully bind with another charged atom, a cation to be specific. Thus, two of
would be required to successfully bind 
+
+
---->
More on the chemical formula can be found here: brainly.com/question/16741890
Answer:
0.161moles
Explanation:
Given parameters:
Mass of Fe = 18g
Oxygen gas is in excess
Unknown:
Number of moles of Fe₂O₃ produced = ?
Solution:
To start with, let us write a chemically balanced equation before proceeding to understand the nuances of this problem.
4Fe + 3O₂ → 2Fe₂O₃
In the equation above above, 4 mole of iron combined with 3 moles of oxygen gas to 2 moles of Fe₂O₃.
In solving this problem, we can identify that Fe is the limiting reactant since we have been told oxygen gas is in excess. The suggests that the extent to which the product is formed and the reaction proceeds hinges on the amount of Fe we have.
It is best to work from the given, or known reactant to the unknown
The known in this scenario is the mass of Fe. Let us find the number of moles of this specie;
Number of moles of Fe = 
Molar mass of Fe = 56g/mol
Number of moles =
= 0.32mol
Using this known number of moles of Fe, we can relate it to that of the unknown amount of the product and obtain the number of moles.
4 moles of Fe produced 2 moles of Fe₂O₃
0.32 moles of Fe will produce
= 0.161moles
Answer:False
Explanation:
Kinda of a opinionated question, but unless you call -12 C warm then the answer is False