Answer:
0.6749 M is the concentration of B after 50 minutes.
Explanation:
A → B
Half life of the reaction = 
Rate constant of the reaction = k
For first order reaction, half life and half life are related by:


Initial concentration of A = ![[A]_o=0.900 M](https://tex.z-dn.net/?f=%5BA%5D_o%3D0.900%20M)
Final concentration of A after 50 minutes = ![[A]=?](https://tex.z-dn.net/?f=%5BA%5D%3D%3F)
t = 50 minute
![[A]=[A]_o\times e^{-kt}](https://tex.z-dn.net/?f=%5BA%5D%3D%5BA%5D_o%5Ctimes%20e%5E%7B-kt%7D)
![[A]=0.900 M\times e^{-0.02772 min^{-1}\times 50 minutes}](https://tex.z-dn.net/?f=%5BA%5D%3D0.900%20M%5Ctimes%20e%5E%7B-0.02772%20min%5E%7B-1%7D%5Ctimes%2050%20minutes%7D)
[A] = 0.2251 M
The concentration of A after 50 minutes = 0.2251 M
The concentration of B after 50 minutes = 0.900 M - 0.2251 M = 0.6749 M
0.6749 M is the concentration of B after 50 minutes.
Answer:
D. oxygen atoms have twice as many protons as chlorine atoms
The answer of this answer is given in the attached file
<span>Benzoin<span> is an organic compound with the formula PhCH(OH)C(O)Ph. It is
a hydroxy ketone attached to two phenyl groups.</span><span>
To answer your question, </span><span>the balanced oxidation-reduction reaction equation for the
oxidation of benzoin by ammonium nitrate is:
</span>2Ph-C(OH)-C(O)-Ph+NH4NO3
--> 2Ph-C(O)-C(O)-Ph + N2 + 3H2O.</span>
<span>
</span><span>I hope this helps and if you have any
further questions, please don’t hesitate to ask again.</span>