Answer:
91.3 kg
Explanation:
weight = m*g
m: mass
g: gravity = 9.8 or 10 (depends on what your instructor tells you to use)
mass = w/g
895/9.8 = 91.3 KG
Write each force in component form:
<em>v </em>₁ : 50 N due east → (50 N) <em>i</em>
<em>v</em> ₂ : 80 N at N 45° E → (80 N) (cos(45°) <em>i</em> + sin(45°) <em>j</em> ) ≈ (56.5 N) (<em>i</em> + <em>j</em> )
The resultant force is the sum of these two vectors:
<em>r</em> = <em>v </em>₁ + <em>v</em> ₂ ≈ (106.5 N) <em>i</em> + (56.5 N) <em>j</em>
Its magnitude is
|| <em>r</em> || = √[(106.5 N)² + (56.5 N)²] ≈ 121 N
and has direction <em>θ</em> such that
tan(<em>θ</em>) = (56.5 N) / (106.5 N) → <em>θ</em> ≈ 28.0°
i.e. a direction of about E 28.0° N. (Just to clear up any confusion, I mean 28.0° north of east, or 28.0° relative to the positive <em>x</em>-axis.)
Answer:
A fast feather
Explanation:
The faster any item is, the more momentum it has
Answer:
Stable atom
Explanation:
A stable atom is one that has a balanced nuclear inter-particle force reaction as such the binding energy of a stable atom is sufficient to permanently keep the nucleus as one unit. Examples of a stable atom are the atoms of monoisotopic elements such as fluorine, sodium, iodine, gold, aluminium, and cobalt.
In a stable atom the expected number of proton, neutron, and electron are present while in an unstable atom or radioactive atom, there are more than the expected number of neutrons or protons, such that the internal energy of the nucleus is excessive and more than the binding energy, which can lead to radioactive decay.