Answer
given,
length of bar = 80 cm
mass of the bar = 10 kg
smaller mass = 4 kg
distance = 20 cm


taking moment about B






difference between two scale = 8 - 6
= 2 N
Assuming this coin is on earth and that it wasn’t dropped forcefully:
Use the formula d = 1/2at^2. Rewriting using a=g and solving for height h gets us h = 1/2(9.8)t^2.
In this case that would get that the change in height h is 0.5(9.8)(0.3^2) = 0.441 m.
Green: nm 495–570. Yellow: nm 570–590. 590–620 nm for orange. Red: 620-750 nm (400–484 THz frequency)
Solids' molecules are strongly attracted to one another. As a result, the molecules are barely moving and tightly packed. Because of this, shape and volume are fixed.
The forces of attraction and repulsion in liquids are comparable. Compared to the solid state, they move a little bit more. They then assume the shape of the container while still having a fixed capacity.
The attraction forces between the molecules in gases are quite weak. They move quite freely and grow in an effort to fill as much space as they can. Consequently, their volume and shape vary (adopt the shape of the container).
You can learn more about states of the matter here:
brainly.com/question/18538345
#SPJ4
D. The man's traits (ff) would be recessive and with one of the girls (FF), all their offspring would have the genotype Ff, meaning all the offspring have freckles.
Answer:
Explanation:
E=(σ/ε0)
As noted by Dirac the field is the same no matter how far you are from the sheet. When your charge covers a conducting plane, as in your case, the field is, D/eo ,(D is charge density). Because the field inside the conductor (no matter how thin) is zero. The only time the field is, D/2eo, is when you have just a sheet of charge, by itself, not on a conducting plane."