Explanation:
According to Le Chatelier's principle, any disturbance caused in an equilibrium reaction will shift the equilibrium in a direction that will oppose the change.
As the given reaction is as follows.

(a) When increase the temperature of the reactants or system then equilibrium will shift in forward direction where there is less temperature. It is possible for an endothermic reaction.
Thus, formation of
will increase.
- (b) When we decrease the volume (at constant temperature) of given reaction mixture then it implies that there will be increase in pressure of the system. So, equilibrium will shift in a direction where there will be decrease in composition of gaseous phase. That is, in the backward direction reaction will shift.
Hence, formation of
will decrease with decrease in volume.
- When we increase the mount of
then equilibrium will shift in the direction of decrease in concentration that is, in the forward direction.
Thus, we can conclude that formation of
will increase then.
Answer:
B
Explanation:
Dalton worked with mainly about the chemistry of atoms.
how do atoms combine to form various molecules.
—rather than the details of the physical, internal structure of atoms, although he never denied the possibility of atoms' having a substructure.
<span>In the periodic table, the elements are organized into groups based on putting together elements with similar properties. For instance, elements in each group have the same number of valence electrons, which makes them form similar bonds. Additionally, elements in the same similar characteristics, such as malleability and magnetism.</span>
Answer:
Enzymes.
Explanation:
That would be enzymes. They increase the rate of chemical reactions in cells.
Answer:
+1
Explanation:
Electrochemistry. In oxidation–reduction (redox) reactions, electrons are transferred from one A redox reaction is balanced when the number of electrons lost by the reductant Hg(l)∣Hg2Cl2(s)∣Cl−(aq) ∥ Cd2+(aq)∣Cd(s).
As is evident from the Stock number, mercury has an oxidation state of +1. This makes sense, as chlorine usually has an oxidation state of -1.