Answer:
Yes
Explanation:
In a third-class lever, the effort force lies between the resistance force and the fulcrum. Some kinds of garden tools are examples of third-class levers. When you use a shovel, for example, you hold one end steady to act as the fulcrum, and you use your other hand to pull up on a load of dirt.
The answer is C. in sort of a way. You can't technically see black matter. However, it is holding the galaxies together.
The relevant formula we can use in this case would be:
h = v0 t + 0.5 g t^2
where,
h = height or distance travelled
v0 = initial velocity = 0 since it was dropped
t = time = 1 seconds
g = 9.8 m/s^2
So calculating for height h:
h = 0 + 0.5 * 9.8 m/s^2 * (1 s)^2
<span>h = 4.9 meters</span>
Answer:
The tension increases to four times its original value.
Explanation:
v = Velocity
r = Radius
m = Mass of stone
The centripetal force is

The tension will balance the centripetal force



The new tension will be 4 times the old tension