Answer:
water is H2O having different structure than alcohol R-OH which means they have different properties too.
Explanation:
In water one oxygen atom is covalently bound with two hydrogen atoms while alcohol is an organic compound having Oh group attached to the carbon chain.
Other than liquid water can occur in solid form that is ice and in gaseous form that is vapors too while alcohol only present in liquid form.
heat of evaporation of alcohol is lower than water means water need more heat to evaporate than alcohol that is why we can say alcohol having more cooling effect than water.
The product in this chemical reaction is Carbon Dioxide or CO2.
This is because it states, "To form," which means that it was produced from the reactants Carbon and Oxygen.
To know what the products are in a statement rather than an equation, words such as produced and formed are used.
Hope this helps!
1) ΔrH = 2mol·ΔfH(NO) - (ΔfH(O₂) + ΔfH(N₂)).
ΔrH = 2 mol · 90.3 kJ/mol - (0 kJ/mol + 0 kJ/mol).
ΔrH = 180.6 kJ.
2) ΔS = 2mol·ΔS(NO) - (ΔS(O₂) + ΔS(N₂)).
ΔS = 2mol · 210.65 J/mol·K - (1mol · 205 J/mol·K + 1 mol · 191.5 J/K·mol).
ΔS = 24.8 J/K.
3) ΔG = ΔH - TΔS.
55°C: ΔG = 180.6 kJ - 328.15 K · 24.8 J/K = 172.46 kJ.
2570°C: ΔG = 180.6 kJ - 2843.15 K · 24.8 J/K = 110.09 kJ.
3610°C: ΔG = 180.6 kJ - 3883.15 K · 24.8 J/K = 84.29 kJ.
Answer:
The entropy change in the environment is 3.62x10²⁶.
Explanation:
The entropy change can be calculated using the following equation:
Where:
Q: is the energy transferred = 5.0 MJ
: is the Boltzmann constant = 1.38x10⁻²³ J/K
: is the initial temperature = 1000 K
: is the final temperature = 500 K
Hence, the entropy change is:
Therefore, the entropy change in the environment is 3.62x10²⁶.
I hope it helps you!
Answer:
1.196 M NaOH
Explanation:
Molarity = moles/Volume (L)
moles NaOH = mass NaOH/MM NaOH = 12/40.01 = 0.299 moles NaOH
Volume solution = 250 mL = 0.250L
M = 0.299/0.250=1.196 M NaOH