198 g of Glucose Is the answer.
C. The mass number is the amount of Protons and electrons there are combined, so 200 - 80 is 120.
Answer:
The first question is 4
The second one is 1
Explanation:
Please mark brainliest! Hope it helped!
Answer:
32.1 g
Explanation:
Step 1: Write the balanced combustion reaction
C₄H₁₀ + 6.5 O₂ ⇒ 4 CO₂ + 5 H₂O
Step 2: Calculate the moles corresponding to 97.4 g of CO₂
The molar mass of CO₂ is 44.01 g/mol.
97.4 g × 1 mol/44.01 g = 2.21 mol
Step 3: Calculate the moles of butane that produced 2.21 moles of carbon dioxide
The molar ratio of C₄H₁₀ to CO₂ is 1:4. The moles of C₄H₁₀ required are 1/4 × 2.21 mol = 0.553 mol
Step 4: Calculate the mass corresponding to 0.553 moles of C₄H₁₀
The molar mass of C₄H₁₀ is 58.12 g/mol.
0.553 mol × 58.12 g/mol = 32.1 g
<h3>
Answer:</h3>
83.33 seconds.
<h3>
Explanation:</h3>
<u>We are given;</u>
- Take off velocity as 300 km/hr
- Acceleration as 1 m/s²
We are required to calculate the take off time of the airplane.
<h3>Step 1: Convert velocity from km/hr to m/s </h3>
We are going to use the conversion factor.
The conversion factor is 3.6 km/hr per m/s
Therefore;
Velocity = 300 km/hr ÷ 3.6 km/hr per m/s
= 83.33 m/s
<h3>Step 2: Calculate the take off time</h3>
We know that;
v = u + at
where, u is the initial velocity, v the final velocity, a the acceleration and t is time.
But, initial velocity is Zero
Therefore;
83.33 m/s = 1 m/s² × t
Thus;
time = 83.33 m/s ÷ 1 m/s²
= 83.33 seconds
Therefore, the take off time is 83.33 seconds.