Answer:
1140 mmHg
Explanation:
1 atmosphere is 760 mmHg, so 1.5 atmospheres is ...
1.5×760 mmHg = 1140 mmHg
<span>The choices are as follows:
h2o + 2o2 = h2o2
fe2o3 + 3h2 = 2fe + 3h2o
al + 3br2 = albr3
caco3 = </span><span>cao + co2
The correct answers would be the second and the last option. The equations that are correctly balanced are:
</span> fe2o3 + 3h2 = 2fe + 3h2o
caco3 = cao + co2
To balance, it should be that the number of atoms of each element in the reactant and the product side is equal.
Answer:
C + 2H2 ⇒ CH4
Explanation:
In order to balance a chemical equation you need to make sure that the number of atoms on both sides are equal
C + H2 = CH4
C = 1
H = 2
Products:
C = 1
H = 4
H2 = 2 × 2 = 4
C + 2H2 ⇒ CH4
Hope this helps.
<h3>1. <u>Answer;</u></h3>
a. the strong nuclear force is much greater than the electric force.
<h3><u>Explanation</u>;</h3>
- <em><u>For an atom to be stable it means it has enough amount of binding energy to hold its nucleus together permanently. </u></em>
- Therefore, <em><u>an unstable atom lacks enough amount of binding energy to hold its nucleus permanently and thus undergoes decay to achieve stability. Unstable atoms are therefore referred to being radioactive.</u></em>
-
Small atoms are stable; <u>this is because they have equal number of protons and neutrons and thus the protons and neutrons fill up energy levels while maximizing the strong force binding the nucleus together. </u>
<h3>9.<u> Answer;</u></h3>
b. change into a different element altogether.
Uranium-238 undergoes alpha decay. Therefore, uranium-238 will <em><u>change into a different element altogether</u></em>.
<h3><u>
Explanation;</u></h3>
- Unstable atoms undergo radioactive decay in order to achieve stability of their nucleus.
- <em><u>Uranium-238 is an example of such atom, which may undergo decay to achieve stability.</u></em>
- <em><u>Alpha decay is one of the types of decays,</u></em> others being beta decay and gamma decay. <em><u>In alpha decay the radioactive isotope undergoes decay such that its mass number is decreased by four and its atomic number is decreased by two.</u></em>
-
Therefore, <em><u>Uranium-238 undergoes alpha decay to form a different element whose mass number is 234 and atomic number is 90, known as thorium-234. </u></em>
Answer:
20 km north that's the answer hope it helped