Answer:
10.4mm
Explanation:
2 pages = 1 leaf
200 pages = 100 leaves
100 × 0.10 = 10 mm thickness
Total thickness = 2(0.20) +10 = 0.4+10 = 10.4mm
Answer:
The maximum height the box will reach is 1.72 m
Explanation:
F = k·x
Where
F = Force of the spring
k = The spring constant = 300 N/m
x = Spring compression or stretch = 0.15 m
Therefore the force, F of the spring = 300 N/m×0.15 m = 45 N
Mass of box = 0.2 kg
Work, W, done by the spring =
and the kinetic energy gained by the box is given by KE = 
Since work done by the spring = kinetic energy gained by the box we have
=
therefore we have v =
=
=
= 5.81 m/s
Therefore the maximum height is given by
v² = 2·g·h or h =
=
= 1.72 m
Answer:
28.3 kg
Explanation:
Assuming the ground is level, the normal force equals the weight.
N = mg
277 N = m × 9.8 m/s²
m = 28.3 kg
Answer:
B. Amplitude is the height of a wave.
Explanation:
Amplitude may have differing (and sometimes tricky) definitions. The most frequent, for symmetric waves) is one that declares an amplitude the change of a signal/wave-height from the zero-intercept/equilibrium point, or, similarly, half the difference between the maximum and the minimum peak within one period.