Answer:
E. Kepler's second law says the planet must move fastest when it is closest, not when it is farthest away.
Explanation:
We can answer this question by using Kepler's second law of planetary motion, which states that:
"A line connecting the center of the Sun with the center of each planet sweeps out equal areas in equal intervals of time"
This means that when a planet is further away from the Sun, it will move slower (because the line is longer, so it must move slower), while when the planet is closer to the Sun, it will move faster (because the line is shorter, so it must move faster).
In the text of this problem, it is written that the planet moves at 31 km/s when is close to the star and 35 km/s when it is farthest: this is in disagreement with what we said above, therefore the correct option is
E. Kepler's second law says the planet must move fastest when it is closest, not when it is farthest away.
In an uniform circular motion, the direction of the net force on the object is radially inward, passing through the center of the circle.
Answer:
Explanation:
Work is defined as the scalar product of force and distance
W=F•d
Given that
F = 8.5i + -8.5j. +×-=-
F=8.5i-8.5j
d = 2.5i + cj
If the work in the practice is zero, then W=0
therefore,
W=F•ds
0=F•ds
0=(8.5i -8.5j)•(2.5i + cj)
Note that
i.i=j.j=k.k=1
i.j=j.i=k.i=i.k=j.k=k.j=0
So applying this
0=(8.5i -8.5j)•(2.5i + cj)
0= (8.5×2.5i.i + 8.5×ci.j -8.5×2.5j.i-8.5×cj.j)
0=21.25-8.5c
Therefore,
8.5c=21.25
c=21.25/8.5
c=2.5
Answer:
Acoustic microstreaming
Explanation:
Acoustic microstreaming is the swirling effect produced by water stream confined in a spaced of a periodontal pocket.
- It is the movement of water in a particular direction as a result of mechanical pressure within the fluid body.
- They are often used in dental procedures to remove particulates from the teeth.
- It mostly relies on the properties of sound waves to achieve this goal