1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elena L [17]
3 years ago
12

Which of these is the most effective way for Leanna to cool down after an intense bike ride

Physics
1 answer:
Sonja [21]3 years ago
6 0
I am pretty sure the answer would be too stretch
You might be interested in
A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a un
Kamila [148]

Answer:

<em>a) 6738.27 J</em>

<em>b) 61.908 J</em>

<em>c)  </em>\frac{4492.18}{v_{car} ^{2} }

<em></em>

Explanation:

The complete question is

A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.

Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?

Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?

Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar. Enter an expression for the mass of the car, in terms of the quantities defined here.

moment of inertia is given as

I = \frac{1}{2}mr^{2}

where m is the mass of the flywheel,

and r is the radius of the flywheel

for the flywheel with radius 1.1 m

and mass 11 kg

moment of inertia will be

I =  \frac{1}{2}*11*1.1^{2} = 6.655 kg-m^2

The maximum speed of the flywheel = 35 m/s

we know that v = ωr

where v is the linear speed = 35 m/s

ω = angular speed

r = radius

therefore,

ω = v/r = 35/1.1 = 31.82 rad/s

maximum rotational energy of the flywheel will be

E = Iw^{2} = 6.655 x 31.82^{2} = <em>6738.27 J</em>

<em></em>

b) second flywheel  has

radius = 2.8 m

mass = 16 kg

moment of inertia is

I = \frac{1}{2}mr^{2} =  \frac{1}{2}*16*2.8^{2} = 62.72 kg-m^2

According to conservation of angular momentum, the total initial angular momentum of the first flywheel, must be equal to the total final angular momentum of the combination two flywheels

for the first flywheel, rotational momentum = Iw = 6.655 x 31.82 = 211.76 kg-m^2-rad/s

for their combination, the rotational momentum is

(I_{1} +I_{2} )w

where the subscripts 1 and 2 indicates the values first and second  flywheels

(I_{1} +I_{2} )w = (6.655 + 62.72)ω

where ω here is their final angular momentum together

==> 69.375ω

Equating the two rotational momenta, we have

211.76 = 69.375ω

ω = 211.76/69.375 = 3.05 rad/s

Therefore, the energy stored in the first flywheel in this situation is

E = Iw^{2} = 6.655 x 3.05^{2} = <em>61.908 J</em>

<em></em>

<em></em>

c) one third of the initial energy of the flywheel is

6738.27/3 = 2246.09 J

For the car, the kinetic energy = \frac{1}{2}mv_{car} ^{2}

where m is the mass of the car

v_{car} is the velocity of the car

Equating the energy

2246.09 =  \frac{1}{2}mv_{car} ^{2}

making m the subject of the formula

mass of the car m = \frac{4492.18}{v_{car} ^{2} }

3 0
3 years ago
What would happen if the pilot did not keep the airplane "trimmed"
Mademuasel [1]

Answer:

In explanation

Explanation:

Pilots who dont use trim often like the feeling of holding constant back pressure because The heavier control forces makes it more difficult to over-control the airplane inside the turn, so it gives the sense of a more stable flight

3 0
3 years ago
A copper wire 20 m long and 4mm in diameter is attached to the Ceiling and a 400 N
Fiesta28 [93]

Answer:

A

Explanation:

5 0
2 years ago
How fast can a man run in miles per hour?
ExtremeBDS [4]
Depends on how well built he is probably for the average American 8 MPH
6 0
3 years ago
A skier is accelerating down a 30.0-degree hill at 3.80 m/s^2.
Bond [772]

Answer:

ax = -3.29[m/s²]

ay = -1.9[m/s²]

Explanation:

We must remember that acceleration is a vector and therefore has magnitude and direction.

In this case, it is accelerating downwards, therefore for a greater understanding we will make a diagram of said vector, this diagram is attached.

a_{x}=-3.8*cos(30) = -3.29 [m/s^{2}]\\ a_{y}=-3.8*sin(30) = -1.9 [m/s^{2}]

3 0
3 years ago
Other questions:
  • What is the weight of a 48 kg girl on Earth? Round the answer to the nearest whole number.
    6·2 answers
  • You run from your friends house that is 1k away. You then walk home. What distance did you travel?
    10·1 answer
  • Which best describes the beginning of the Big Bang Theory?
    13·2 answers
  • Which of these is not shared by bohrs model and the modern atomic model?
    13·1 answer
  • A woman with mass 50 kg is standing on the rim of a large disk that is rotating at 0.80 rev/s about an axis through its center.
    7·1 answer
  • 3. If a vector that is 1 cm long represents a
    15·1 answer
  • The environment between the outer and inner nuclear membranes is most accurately referred to as the:
    11·1 answer
  • Which of the following items has the least inertia while at rest?
    12·2 answers
  • You can take your heart rate for 6 seconds and multiply by 10 to get the 60 second count quickly during
    13·1 answer
  • As the wavelength of electromagnetic radiation increase
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!