Complete Question
A 95 kg clock initially at rest on a horizontal floor requires a 650 N horizontal force to set it in motion. After the clock is in motion, a horizontal force of 560 N keeps it moving with a constant velocity. Find the coefficient of static friction and the coefficient of kinetic friction.
Answer:
The value for static friction is 
The value for static friction is 
Explanation:
From the question we are told that
The mass of the clock is 
The first horizontal force is 
The second horizontal force is 
Generally the static frictional force is equal to the first horizontal force
So

=> 
=> 
Generally the kinetic frictional force is equal to the second horizontal force
So



The correct answer for this problem is c
In this case, volume of the can remains constant. The relationship between pressure and temperature at constant volume is given by:
P/T = Constant
Then

Where
P1 = 40 psi
P2 = ?
T1 = 60°F ≈ 289 K
T2 = 90°F ≈ 305 K (note, 363 K is not right)
Substituting;
Answer:
a
Explanation:
because it has more energy
Answer:
B. There is a direct proportion between the mass and force listed in the table.
Explanation:
From the table, the values of force increases with increase in the value of mass.
if 5kg=25 N
Finding the contant of proportionality k;
k=25/5=5
thus M=k(F)...........where M is mass in kg and F is force in newton, then
M=5F
This show that for every value of mass, we get the value of Force if we multiply by a contant k=5
This means there is a direct proportionality relation between mass and force in the table.