1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
galina1969 [7]
3 years ago
6

A particle in uniform circular motion requires a net force acting in what direction?

Physics
1 answer:
mel-nik [20]3 years ago
6 0
The net force will point towards the acceleration of the object, as supported by Newton's second law.
You might be interested in
Can someone help with me 1,2,3 please I will mark brainless .
Yuki888 [10]

Answer:

1) A. .33 hr

2) B. 6ft

3) A. 58mi/hr

6 0
2 years ago
Function of a simple pendulum​
Misha Larkins [42]

Answer:

A pendulum is a mechanical machine that creates a repeating, oscillating motion. A pendulum of fixed length and mass (neglecting loss mechanisms like friction and assuming only small angles of oscillation) has a single, constant frequency. This can be useful for a great many things.

From a historical point of view, pendulums became important for time measurement. Simply counting the oscillations of the pendulum, or attaching the pendulum to a clockwork can help you track time. Making the pendulum in such a way that it holds its shape and dimensions (in changing temperature etc.) and using mechanisms that counteract damping due to friction led to the creation of some of the first very accurate all-weather clocks.

Pendulums were/are also important for musicians, where mechanical metronomes are used to provide a notion of rhythm by clicking at a set frequency.

The Foucault pendulum demonstrated that the Earth is, indeed, spinning around its axis. It is a pendulum that is free to swing in any planar angle. The initial swing impacts an angular momentum in a given angle to the pendulum. Due to the conservation of angular momentum, even though the Earth is spinning underneath the pendulum during the day-night cycle, the pendulum will keep its original plane of oscillation. For us, observers on Earth, it will appear that the plane of oscillation of the pendulum slowly revolves during the day.

Apart from that, in physics a pendulum is one of the most, if not the most important physical system. The reason is this - a mathematical pendulum, when swung under small angles, can be reasonably well approximated by a harmonic oscillator. A harmonic oscillator is a physical system with a returning force present that scales linearly with the displacement. Or, in other words, it is a physical system that exhibits a parabolic potential energy.

A physical system will always try to minimize its potential energy (you can accept this as a definition, or think about it and arrive at the same conclusion). So, in the low-energy world around us, nearly everything is very close to the local minimum of the potential energy. Given any shape of the potential energy ‘landscape’, close to the minima we can use Taylor expansion to approximate the real potential energy by a sum of polynomial functions or powers of the displacement. The 0th power of anything is a constant and due to the free choice of zero point energy it doesn’t affect the physical evolution of the system. The 1st power term is, near the minimum, zero from definition. Imagine a marble in a bowl. It doesn’t matter if the bowl is on the ground or on the table, or even on top of a building (0th term of the Taylor expansion is irrelevant). The 1st order term corresponds to a slanted plane. The bottom of the bowl is symmetric, though. If you could find a slanted plane at the bottom of the bowl that would approximate the shape of the bowl well, then simply moving in the direction of the slanted plane down would lead you even deeper, which would mean that the true bottom of the bowl is in that direction, which is a contradiction since we started at the bottom of the bowl already. In other words, in the vicinity of the minimum we can set the linear, 1st order term to be equal to zero. The next term in the expansion is the 2nd order or harmonic term, a quadratic polynomial. This is the harmonic potential. Every higher term will be smaller than this quadratic term, since we are very close to the minimum and thus the displacement is a small number and taking increasingly higher powers of a small number leads to an even smaller number.

This means that most of the physical phenomena around us can be, reasonable well, described by using the same approach as is needed to describe a pendulum! And if this is not enough, we simply need to look at the next term in the expansion of the potential of a pendulum and use that! That’s why each and every physics students solves dozens of variations of pendulums, oscillators, oscillating circuits, vibrating strings, quantum harmonic oscillators, etc.; and why most of undergraduate physics revolves in one way or another around pendulums.

Explanation:

7 0
2 years ago
arzan, who weighs 700 N, swings from a cliff at the end of a convenient vine thatis 20 m long. From the top of the cliff to the
vekshin1

Answer:

= 7.07 m

Explanation:

The Tarzan reaches bottom of swing after descending 2.5 m,

change in his potential energy equals his kinetic energy at bottom of swing

m g h = (1/2) m v²   ,  

hence speed v of Tarzan at bottom of swing is given as  

v = ( 2 g h )1/2

= ( 2 × 9.8 × 2.5 )1/2

= 7 m/s

At the bottom of swing, if the vine breaks, then he is moving with horizontal velocity 7 m/s in gravitational field.  

If vertical distance from ground to bottom of swing is 5 m, then time t for Tarzan to reach ground is given by

S = (1/2)g t2 or   t = (2S/g)1/2

= ( 2 × 5 / 9.8 )1/2

= 1.01 s

Horizontal distance traveled by Tarzan = 1.01 × 7

= 7.07 m

7 0
2 years ago
The peak luminosity of a white dwarf supernova is around 1010 Lsun, and it remains brighter than 108 Lsun for about 150 days. In
Airida [17]

Answer:

Explanation: find the attached solution below

8 0
3 years ago
A large bottle contains a number of medicinal tablets is 0.5kg. Calculate the number of tablets in the bottle?
Alexeev081 [22]

Answer:

the answer is 5k in the bottle have

8 0
3 years ago
Other questions:
  • A 2 kg object is given a displacement ∆~s = (5 m)ˆı + (3 m) ˆ + (−4 m) ˆk along a straight line. During the displacement, a con
    14·1 answer
  • Which planet's gravitational pull is closest to that of Earth?
    7·1 answer
  • What is the displacement of the runner, whose velocity versus time graph is shown in the Figure, in the first 15.5 s?
    10·1 answer
  • Why is a camera lens round but the pictures come out square
    14·2 answers
  • A constant volume perfect gas thermometer indicates a pressure of 6.69 kPaat the triple point of water (273.16 K). (a) What chan
    12·1 answer
  • Which value is equivalent to 7.2 kilograms?
    8·2 answers
  • Consider dropping a ball from rest. This ball moves from astate of high gravitational potential energy to one of lowgravitationa
    14·1 answer
  • What does the law of conservation of energy state? *
    5·2 answers
  • Otion
    7·1 answer
  • Which term does this explain?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!