1. 2500/60 joules/sec
2. 2,500Nm
Answer:
200/1000=0.2kg hope ur help and mark me brainlist
Answer:
33 N
Explanation:
v = Velocity of fluid = 8+2 = 10 m/s
= Density of fluid = 1.2 kg/m³
C = Coefficient of drag = 1.1
A = Cross sectional area = 0.5 m²
Drag force is given by

The drag force on the athlete is 33 N
Answer:
<em>The velocity of the carts after the event is 1 m/s</em>
Explanation:
<u>Law Of Conservation Of Linear Momentum
</u>
The total momentum of a system of bodies is conserved unless an external force is applied to it. The formula for the momentum of a body with mass m and speed v is
P=mv.
If we have a system of bodies, then the total momentum is the sum of the individual momentums:

If a collision occurs and the velocities change to v', the final momentum is:

Since the total momentum is conserved, then:
P = P'
In a system of two masses, the equation simplifies to:

If both masses stick together after the collision at a common speed v', then:

The common velocity after this situation is:

The m1=2 kg cart is moving to the right at v1=5 m/s. It collides with an m2= 8 kg cart at rest (v2=0). Knowing they stick together after the collision, the common speed is:

The velocity of the carts after the event is 1 m/s
Answer:
The answer to your question is Ke = 72 J
Explanation:
Kinetic energy depends on the speed of and object and its mass.
Data
mass = m = 4 kg
speed = v = 6 m/s
distance = d = 8 m
Kinetic energy = ke = ?
Formula
Ke = (1/2) mv²
Substitution
Ke = (1/2) (4)(6)²
Simplification
Ke = (1/2)(4)(36)
Ke = (1/2)(144)
Ke = 72 Joules
Result
Ke = 72 J