Explanation:
The given data is as follows.
n = 2 mol, P = 1 atm, T = 300 K
Q = +34166 J, W= -1216 J (work done against surrounding)
=
Relation between internal energy, work and heat is as follows.
Change in internal energy (
) = Q + W
= [34166 + (-1216)] J
= 32950 J
Also, 
=
32950 J = 

1321.06 K + 300 K =
= 1621.06 K
Thus, we can conclude that the final temperature of the gas is 1621.06 K.
Answer:
the answer would be a i did the test
Explanation:
Using the Michaelis-Menten equation competitive inhibition, the Inhibition constant, Ki of the inhibitor is 53.4 μM.
<h3>What is the Ki for the inhibitor?</h3>
The Ki of an inhibitor is known as the inhibition constant.
The inhibition is a competitive inhibition as the Vmax is unchanged but Km changes.
Using the Michaelis-Menten equation for inhibition:
Making Ki subject of the formula:
where:
- Kma is the apparent Km due to inhibitor
- Km is the Km of the enzyme-catalyzed reaction
- [I] is the concentration of the inhibitor
Solving for Ki:
where
[I] = 26.7 μM
Km = 1.0
Kma = (150% × 1 ) + 1 = 2.5
Ki = 26.7 μM/{(2.5/1) - 1)
Ki = 53.4 μM
Therefore, the Inhibition constant, Ki of the inhibitor is 53.4 μM.
Learn more about enzyme inhibition at: brainly.com/question/13618533
the answer is 360 g H2O with a 90.3 yeild percentage
Answer:
Phosphorus trichloride, PCl₃ undergoes change in bonding and molecular force of attraction, causing it to be liquid at room temperature.
Explanation:
Unlike other chlorides of Period 3 elements, Phosphorus trichloride, PCl₃ changes the structure of its molecular bonding from ionic to covalent bonds as it transitions to fluids (liquids or gases). The PCl₃ molecule also has the weak Van der Waals dispersion and dipole-dipole attraction, making it a fuming liquid at room temperature, with no electrical conductivity.