Answer:
C.
Fusion reactions require a lot of heat and pressure
Explanation:
nuclear fusion takes place only at extremely high temperatures. That's because a great deal of energy is needed to overcome the force of repulsion between the positively charged nuclei. ... A: Nuclear fusion doesn't occur naturally on Earth because it requires temperatures far higher than Earth temperatures.
<span>Ionic compounds are chemical compounds in which ions are held together in a lattice structure by ionic bonds. They have a high melting and boiling point, and they have a high hardness and are very brittle. The cations and anions are stuck together in a sense. So in this case, sodium (Na) is attracted to Chlorine (Cl).</span>
Moles of PF₃ : 4
<h3>Further explanation</h3>
A reaction coefficient is a number in the chemical formula of a substance involved in the reaction equation. The reaction coefficient is useful for equalizing reagents and products.
Reaction
1.25 moles of P₄(s) is reacted with 6 moles of F₂(g)
Limiting reactant : the smallest ratio (mol divide by coefficient)
P₄ : F₂ =
mol PF₃ based on mol of limiting reactant(F₂), so mol PF₃ :
Answer:
4 g OF IODINE-131 WILL REMAIN AFTER 32 DAYS.
Explanation:
Half life (t1/2) = 8 days
Original mass (No) = 64 g
Elapsed time (t) = 32 days
Mass remaining (Nt) = ?
Using the half life equation we can obtain the mass remaining (Nt)
Nt = No (1/2) ^t/t1/2
Substituting the values, we have;
Nt = 64 * ( 1/2 ) ^32/8
Nt = 64 * (1/2) ^4
Nt = 64 * 0.0625
Nt = 4 g
So therefore, 4 g of the iodine-131 sample will remain after 32 days with its half life of 8 days.