Answer:
The farther star will appear 4 times fainter than the star that is near to the observer.
Explanation:
Since it is given that the luminosity of the 2 stars is same thus they radiate the same energy per unit time
Consider a spherical wave front of energy 'E' that leaves both the stars (Both radiate 'E' as they have same luminosity)
This Energy is spread over the whole surface area of sphere Thus when the wave front is at a distance 'r' the energy per unit surface area is given by

For the star that is twice away from the earth the distance is '2r' thus we will receive an energy given by
Hence we sense it as 4 times fainter than the nearer star.
67.8 turns needed by the secondary coil to run the bulb.
<u>Explanation</u>:
We know that,



For calculating number of turns

Given that,



We need to find the number of turns in the secondary winding
to run the bulb at 120W 
Firstly find the secondary voltage in the transformer use, 






Now, finding the number of turns in secondary coil. Use, 




The number of turns in the secondary winding are 67.8 turns.
Use KE= 1/2mv^2
So...
50,000=(.5)(1,000)v^2
50,000=500 x v^2
Divide 500 on both sides
100 = v^2
Square root both sides to get rid of v^2
Therefore v = 10 m/s
Answer:
Q=+100kj,w=-15kj,Q=100kj,w=-62kj
Explanation:
when energy is exerted into a system work done is equal to zero .hence the system does work to the surrounding.
Complete Question
The complete question is shown on the first uploaded image
Answer:
a

b

Explanation:
From the question we are told that
The amplitude is 
The period is 
The test weight is 
Generally the radial acceleration is mathematically represented as

at maximum angular acceleration

So

Now
is the angular velocity which is mathematically represented as

Therefore
![a_{max} = [\frac{2 * \pi}{T} ]^2 * A](https://tex.z-dn.net/?f=a_%7Bmax%7D%20%3D%20%20%5B%5Cfrac%7B2%20%2A%20%20%5Cpi%7D%7BT%7D%20%5D%5E2%20%2A%20A)
substituting values
![a_{max} = [\frac{2 * 3.142}{17} ]^2 * 0.018](https://tex.z-dn.net/?f=a_%7Bmax%7D%20%3D%20%20%5B%5Cfrac%7B2%20%2A%20%203.142%7D%7B17%7D%20%5D%5E2%20%2A%200.018)

Generally this test weight is mathematically represented as
Where k is the spring constant
Therefore

substituting values

