This problem is about the rate of the current. It's important to know that refers to the quotient between the electric charge and the time, that's the current rate.

Where Q = 2.0×10^−4 C and t = 2.0×10^−6 s. Let's use these values to find I.

<em>As you can observe above, the division of the powers was solved by just subtracting their exponents.</em>
<em />
<h2>Therefore, the rate of the current flow is 1.0×10^2 A.</h2>
Yes. It r<span>efers to any of the temperatures assigned to a number of reproducible equilibrium states on the International Practical Temperature Scale</span><span>
In short, Your Answer would be "True"
Hope this helps!</span>
Answer:
8.89288275 m/s
Explanation:
F = Tension = 54 N
= Linear density of string = 5.2 g/m
A = Amplitude = 2.5 cm
Wave velocity is given by

Frequency is given by

Angular frequency is given by

Maximum velocity of a particle is given by

The maximum velocity of a particle on the string is 8.89288275 m/s
A circuit which only has one path for current to follow