Amount of work done is zero and so power = 0 watts.
<u>Explanation:</u>
Power is the rate at which work is done, or W divided by delta t. Since the barbell is not moving, the weightlifter is not doing work on the barbell.Therefore, if the work done is zero, then the power is also zero.It may seem unusual that the data given in question is versatile i.e. A weightlifter exerts an upward force on a 1000-N barbell and holds it at a height of 1 meter for 2 seconds. But, still the answer is zero watts , this was a tricky question although conceptual basis of question was good! Power is dependent on amount of work done which is further related to displacement and here the net displacement is zero ! Hence, amount of work done is zero and so power = 0 watts.
Answer:
As the concentration of a solute in a solution increases, the freezing point of the solution <u><em>decrease </em></u>and the vapor pressure of the solution <em><u>decrease </u></em>.
Explanation:
Depression in freezing point :

where,
=depression in freezing point =
= freezing point constant
m = molality ( moles per kg of solvent) of the solution
As we can see that from the formula that higher the molality of the solution is directly proportionate to the depression in freezing point which means that:
- If molality of the solution in high the depression in freezing point of the solution will be more.
- If molality of the solution in low the depression in freezing point of teh solution will be lower .
Relative lowering in vapor pressure of the solution is given by :

= Vapor pressure of pure solvent
= Vapor pressure of solution
= Mole fraction of solute

Vapor pressure of the solution is inversely proportional to the mole fraction of solute.
- Higher the concentration of solute more will the be solute's mole fraction and decrease in vapor pressure of the solution will be observed.
- lower the concentration of solute more will the be solute's mole fraction and increase in vapor pressure of the solution will be observed.
As per above given data
initial velocity = 19.3 km/s
final velocity = - 18.8 km/s
now in order to find the change in velocity




Part b)
Now we need to find acceleration
acceleration is given by formula

given that


now the acceleration is given as


so above is the acceleration
Answer:
3.185×10^-29 kgm/s
Explanation:
Momentum(p)=mass×velocity
=9.1×10^-31×3.5×10
=3.185×10^-29 kgm/s
Answer:
Acceleration of proton will be 
Explanation:
We have given a proton is placed in an electric field of intensity of 700 N/C
So electric field E = 700 N/C
Mass of proton 
Charge on proton 
So electric force on the proton 
This force will be equal to force due to acceleration of the proton
According to newton's law force is given by F = ma
So 

So acceleration of proton will be 