Answer:
<u><em /></u>
- <u><em>Br²⁺ (g) → Br³⁺ (g) + e⁻</em></u>
Explanation:
1) The <u>first ionization energy</u> is the energy required to release an electron from a gas neutral atom.
Hence, this is the energy required for this process:
2) The <u>second ionization energy </u>is the energy required to release an electron from a gas ion with charge 1+.
Hence, this is the energy required for this process:
3) The<em><u> third ionization energy</u></em> is the energy required to release an electron from a gas ion with charge +2.
Hence, this is the energy required for this process:
<u />
- <u><em>Br²⁺ (g) → B³⁺ (g) + e⁻</em></u>
Answer:
titanium (I) chloride
Explanation:
Tin has a chemical formular of "Sn"

Answer:
Molar mass of solute: 300g/mol
Explanation:
<em>Vapor pressure of pure benzene: 0.930 atm</em>
<em>Assuming you dissolve 10.0 g of the non-volatile solute in 78.11g of benzene and vapour pressure of solution was found to be 0.900atm</em>
<em />
It is possible to answer this question based on Raoult's law that states vapor pressure of an ideal solution is equal to mole fraction of the solvent multiplied to pressure of pure solvent:

Moles in 78.11g of benzene are:
78.11g benzene × (1mol / 78.11g) = <em>1 mol benzene</em>
Now, mole fraction replacing in Raoult's law is:
0.900atm / 0.930atm = <em>0.9677 = moles solvent / total moles</em>.
As mole of solvent is 1:
0.9677× total moles = 1 mole benzene.
Total moles:
1.033 total moles. Moles of solute are:
1.033 moles - 1.000 moles = <em>0.0333 moles</em>.
As molar mass is the mass of a substance in 1 mole. Molar mass of the solute is:
10.0g / 0.033moles = <em>300g/mol</em>
That is the symbol that depicts an oxidizing reagent
1. Is a (primary)
2. Is 2 (c)
3. Not sure sorry ✨
4. HBr (b)