Answer:
Visible wavelengths range from 0.0007 milimeters for red light, through orange, yellow, green, and blue, to 0.0004 milimeters for violet light.
Ultraviolet is shorter wavelengths than violet.
Hope This Helps.
The answer is b
Explanation:
Answer:
The percent isotopic abundance of Ir-193 is 60.85 %
The percent isotopic abundance of Ir-191 is 39.15 %
Explanation:
we know there are two naturally occurring isotopes of iridium, Ir-191 and Ir-193
First of all we will set the fraction for both isotopes
X for the isotopes having mass 193
1-x for isotopes having mass 191
The average atomic mass is 192.217
we will use the following equation,
193x + 191(1-x) = 192.217
193x + 191 - 191x = 192.217
193x- 191x = 192.217 - 191
2x = 1.217
x= 1.217/2
x= 0.6085
0.6085 × 100 = 60.85 %
60.85% is abundance of Ir-193 because we solve the fraction x.
now we will calculate the abundance of Ir-191.
(1-x)
1-0.6085 =0.3915
0.3915× 100= 39.15 %
Answer:
a) 7.0.
b) Nickel sulfate hepta hydrate.
c) 280.83 g/mol.
d) 44.9%.
Explanation:
<u><em>a) What is the formula of the hydrate?</em></u>
The mass of the hydrated sample (NiSO₄.xH₂O) = 5.0 g,
The mass of the anhydrous salt (NiSO₄) = 2.755 g,
The mass of water = 5.0 g - 2.755 g = 2.245 g.
∴ no. of moles of water = mass/molar mass = (2.245 g)/(18.0 g/mol) = 0.1247 mol.
∴ no. of moles of anhydrous salt (NiSO₄) = mass/molar mass = (2.755 g)/(154.75 g/mol) = 0.0178 mol.
∴ water of crystallization in the sample (x) = no. of moles of water/no. of moles of anhydrous salt (NiSO₄) = (0.1247 mol)/(0.0178 mol) = 7.0.
<u><em>b) What is the full chemical name for the hydrate?</em></u>
The name of the salt (NiSO₄.7H₂O) is Nickel sulfate hepta hydrate.
<u><em>c) What is the molar mass of the hydrate? </em></u>
(NiSO₄.7H₂O)
The molar mass = molar mass of NiSO₄ + 7(molar mass of H₂O) = (154.75 g/mol) + 7(18.0 g/mol) = 280.83 g/mol.
<em><u>d) What is the mass % of water in the hydrate?</u></em>
The mass % of water = (mass of water)/(mass of hydrated sample) x 100 = (2.245 g)/(5.0 g) x 100 = 44.9%.