Answer:
a= 0.5m/s^2
Explanation:
Force applied on an object is known as
F=m.a (Newton's second law states it)
a=F/m
a=5/10=0.5m/s^2
Answer:
Later high school years and freshman year of college
Explanation:
The transition from high school to college is an important developmental milestone that holds the potential for personal growth and behavioral change. A cohort of 2,025 students was recruited during the summer before they matriculated into college and completed Internet-based surveys about their participation in a variety of behavioral risks during the last three months of high school and throughout the first year of college. Alcohol use, marijuana use, and sex with multiple partners increased during the transition from high school to college, whereas driving after drinking, aggression, and property crimes decreased. Those from rural high schools and those who elected to live in private dormitories in college were at highest risk for heavy drinking and driving after drinking.
Answer:
<h2>0.2 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula
![a = \frac{f}{m} \\](https://tex.z-dn.net/?f=a%20%3D%20%20%5Cfrac%7Bf%7D%7Bm%7D%20%20%5C%5C%20)
f is the force
m is the mass
From the question we have
![a = \frac{100}{500} = \frac{1}{5} = 0.2 \\](https://tex.z-dn.net/?f=a%20%3D%20%20%5Cfrac%7B100%7D%7B500%7D%20%20%3D%20%20%5Cfrac%7B1%7D%7B5%7D%20%20%3D%200.2%20%5C%5C%20)
We have the final answer as
<h3>0.2 m/s²</h3>
Hope this helps you
Acceleration=force/mass=28/(10+4)=2m/s^2
force10kg=ma=10*2
force4kg=ma=(10*2)=20
the4 kg is pushing against the 10kg block
vf=vi+at
-10=20*28/14 * t
t=30/2=15sec
i hope this can help you.
The Bohr's proposal for the angular momentum of an electron in Bohr's model of the hydrogen atom is:
L=(n*h)/(2π), where n is the number of the energy level and h is the Planck's constant. This equation shows us the quantization of angular momentum of the electron. So the correct answer is the second one: Planck's constant.