Answer:
here we can say that acceleration of the satellite is same as the gravitational field due to Earth at that location
Explanation:
As we know that gravitational field is defined as the force experienced by the satellite per unit of mass
so we will have
![E = \frac{F}{m}](https://tex.z-dn.net/?f=E%20%3D%20%5Cfrac%7BF%7D%7Bm%7D)
now in order to find the acceleration of the satellite we know by Newton's II law
![F = ma](https://tex.z-dn.net/?f=F%20%3D%20ma)
so we will have
![a = \frac{F}{m}](https://tex.z-dn.net/?f=a%20%3D%20%5Cfrac%7BF%7D%7Bm%7D)
so here we can say that acceleration of the satellite is same as the gravitational field due to Earth at that location
The flowers reflect relatively low frequency and low amplitude light waves.
White light contains a spectrum of colors, and red light is at the beginning of this spectrum in terms of energy. This means that it has the lowest frequency, as the energy of a wave of light is directly proportional to its frequency.
The amplitude of a light wave gives a measure of how intense the light is. A dull light means that the amplitude of the wave is low.
Answer:
A. The time taken for the car to stop is 3.14 secs
B. The initial velocity is 81.64 ft/s
Explanation:
Data obtained from the question include:
Acceleration (a) = 26ft/s2
Distance (s) = 256ft
Final velocity (V) = 0
Time (t) =?
Initial velocity (U) =?
A. Determination of the time taken for the car to stop.
Let us obtain an express for time (t)
Acceleration (a) = Velocity (V)/time(t)
a = V/t
Velocity (V) = distance (s) /time (t)
V = s/t
a = s/t^2
Cross multiply
a x t^2 = s
Divide both side by a
t^2 = s/a
Take the square root of both side
t = √(s/a)
Now we can obtain the time as follow
Acceleration (a) = 26ft/s2
Distance (s) = 256ft
Time (t) =..?
t = √(s/a)
t = √(256/26)
t = 3.14 secs
Therefore, the time taken for the car to stop is 3.14 secs
B. Determination of the initial speed of the car.
V = U + at
Final velocity (V) = 0
Deceleration (a) = –26ft/s2
Time (t) = 3.14 sec
Initial velocity (U) =.?
0 = U – 26x3.14
0 = U – 81.64
Collect like terms
U = 81.64 ft/s
Therefore, the initial velocity is 81.64 ft/s
Explanation:
A micrometer, sometimes known as a micrometer screw gauge, is a device incorporating a calibrated screw widely used for accurate measurement of components in mechanical engineering and machining as well as most mechanical trades, along with other metrological instruments such as dial, vernier, and digital calipers
The three types are alpha beta and gamma