Answer:
The molar mass in g/mol is 121.4 g/m
Explanation:
Let's apply the Ideal Gases Law to solve this:
P . V = n . R. T
V = 125 mL → 0.125L
P = 754 Torr
760 Torr ___ 1 atm
754 Torr ____ (754 / 760) = 0.992 atm
Moles = Mass / Molar mass
0.992 atm . 0.125L = (0.495 g / MM) . 0.082 . 371K
(0.992 atm . 0.125L) / (0.082 . 371K) = (0.495 g / MM)
4.07x10⁻³ mol = 0.495 g / MM
MM = 0.495 g / 4.07x10⁻³ mol → 121.4 g/m
In Lewis dot structures, you draw the atom in the center and then surround the atom with its valence electrons. The Lewis structure for O is as shown in the attached diagram.
<h3>What is the Lewis structure of O ?</h3>
Lewis Structure of an atom of oxygen contains 6 electrons in the valence shell. Four valence electrons exist in lone pairs. It implies that oxygen atom must participate in two single bonds or one double bond in order to have an octet configuration.
A simplified representation of the valence shell electrons in a molecule is called Lewis Structure. It shows how electrons are arranged around individual atoms in the molecule.
To know more about Lewis structure, refer
brainly.com/question/1525249
#SPJ4
Heterogeneous-a mixture of two or more things
solution-a substance that dissolves
suspension-mixture where solid particles do not dissolve
colloid-does not settle and cannot be seperated
Heterogeneous
- tuna casserole
-chocolate chip cookies
-gelatin dessert
-green salad
Solution
-oil (?) depends
Suspension
-vinegar salad dressing
-oil (?) it could go in either catagory
Colloid
-vinegar salad dressing
-oil (?)
The reaction will produce 12.1 g Ag₂S.
<em>Balanced equation</em> = 2Ag + S ⟶ Ag₂S
<em>Mass of Ag₂S</em> = 10.5 g Ag × (1 mol Ag/107.87 g Ag) × (1 mol Ag₂S/2 mol Ag)
× (247.80 g Ag₂S/1 mol Ag₂S) = 12.1 g Ag₂S
Answer:
6.88 mg
Explanation:
Step 1: Calculate the mass of ³²P in 175 mg of Na₃³²PO₄
The mass ratio of Na₃³²PO₄ to ³²P is 148.91:31.97.
175 mg g Na₃³²PO₄ × 31.97 g ³²P/148.91 g Na₃³²PO₄ = 37.6 mg ³²P
Step 2: Calculate the rate constant for the decay of ³²P
The half-life (t1/2) is 14.3 days. We can calculate k using the following expression.
k = ln2/ t1/2 = ln2 / 14.3 d = 0.0485 d⁻¹
Step 3: Calculate the amount of P, given the initial amount (P₀) is 37.6 mg and the time elapsed (t) is 35.0 days
For first-order kinetics, we will use the following expression.
ln P = ln P₀ - k × t
ln P = ln 37.6 mg - 0.0485 d⁻¹ × 35.0 d
P = 6.88 mg