Answer:
Ionic bonding is the complete transfer of valence electron(s) between atoms. It is a type of chemical bond that generates two oppositely charged ions. In ionic bonds, the metal loses electrons to become a positively charged cation, whereas the nonmetal accepts those electrons to become a negatively charged anion.
Explanation:
Answer: BF3
Explanation: boron needs 4 electron to obtain octet and Fluorine has just one. For the valence shell to be completely filled it will have to form BF4- with 4 fluorine atom surrounding it.
Answer:
Explanation:
Not Many
1 mol of CO has a mass of
C = 12
O = 16
1 mol = 28 grams.
1 mol of molecules = 6.02 * 10^23
x mol of molecules = 3.14 * 10^15 Cross multiply
6.02*10^23 x = 1 * 3.14 * 10^15 Divide by 6.02*10^23
x = 3.14*10^15 / 6.02*10^23
x = 0.000000005 mols
x = 5*10^-9
1 mol of CO has a mass of 28
5*10^-9 mol of CO has a mass of x Cross Multiply
x = 5 * 10^-9 * 28
x = 1.46 * 10^-7 grams
Answer: there are 1.46 * 10-7 grams of CO if only 3.14 * 10^15 molecules are in the sample
In order to measure 0.733 moles of KBr from a 3.00 M solution, the chemist needs 244 mL of solution.
<h3>What is molarity?</h3>
Molarity (M) is a unit of concentration of solutions, and it is defined as the moles of a solute per liters of a solution.
- Step 1: Calculate the liters of solution required.
A chemist has a 3.00 M KBr solution and wants to measure 0.733 moles of KBr. The required volume is:
0.733 mol × (1 L/3.00 mol) = 0.244 L
- Step 2: Convert 0.244 L to mL.
We will use the conversion factor 1 L = 1000 mL.
0.244 L × (1000 mL/1 L) = 244 mL
In order to measure 0.733 moles of KBr from a 3.00 M solution, the chemist needs 244 mL of solution.
Learn more about molarity here: brainly.com/question/9118107
Answer:
Role is defined below
Explanation:
A small GTP-binding protein, is an important module of the signal transduction pathway used by growth factors to initiate cell growth and differentiation. Cellular activation with growth factors such as epidermal growth factor (EGF) induces Ras to move from an inactive state linked to GDP to an active state linked to GTP. In recent times, a mixture of genetic and biochemical studies has resulted in the elucidation of a signaling pathway that leads from growth factor receptors to Ras. After joining EGF, the EGF receptor tyrosine kinase is activated, which leads to receptor auto phosphorylation in multiple tyrosine residues. Signaling proteins with homology domains Src 2 (SH2) then bind to these phosphorylated residues in tyrosine, initiating multiple signaling cascades. Distinct of these SH2 area proteins, Grb2, exists in the cytoplasm in a preformed complex with a second protein, Son of Sevenless (Sos), which can catalyze the Ras GTP / GDP exchange. After stimulation of the growth factor, the phosphorylated EGF receptor with tyrosine binds to the Grb2 / Sos complex and translocates it to the plasma membrane. It is believed that this translocation brings Sos closer to Ras, which leads to the activation of Ras. In dissimilarity, the insulin receptor does not bind Grb2 directly, but rather induces the tyrosine phosphorylation of two proteins, the substrate-1 insulin receptor and Shc, which bind to the Grb2 / Sos complex. Once Ras is activated, a cascade of protein kinases that are important in a myriad of growth factor responses is stimulated.