Resultant is the correct answer!
solution:
We know v0 = 0, a = 9.8, t = 4.0. We need to solve for v
so,
we use the equation:
v = v0 + at
v = 0 + 9.8*4.0
v = 39.2 m/s
Now we just need to solve for d, so we use the equation:
d = v0t + 1/2*a*t^2
d = 0*4.0 + 1/2*9.8*4.0^2
d = 78.4 m
Answer:
2.28
Explanation:
From mirror formula,
1/f = 1/u+1/v .......... Equation 1
Where f = focal length of the mirror, v = image distance, u = object distance.
Note: The focal length mirror is positive.
make v the subject of the equation,
v = fu/(u-f)............ Equation 2
Given: f = 2.5 cm, u = 1.4 cm
Substitute into equation 2
v = 2.5(1.4)/(1.4-2.5)
v = 3.5/-1.1
v = -3.2 cm.
Note: v is negative because it is a virtual image.
But,
Magnification = image distance/object distance
M = v/u
Where M = magnification.
Given: v = 3.2 cm, u = 1.4 cm
M = 3.2/1.4
M = 2.28.
Thus the magnification of the tooth = 2.28.
Answer:
m≈501.57 g
Explanation:
The density formula is:
d=m/v
Let’s rearrange the formula for m. m is being divided by v. The inverse of division is multiplication, so multiply both aides by v.
d*v= m/v*v
d*v=m
The mass can be found by multiply the density and the volume.
m=d*v
The density is 1.06 grams per milliliter and the volume is 473.176 milliliters.
d= 1.06 g/mL
v= 473.176 mL
Substitute the values into the formula.
m= 1.06 g/mL * 473.176 mL
Multiply. When multiplying, the mL will cancel out.
m= 501.56656 g
Let’s round to the nearest hundredth. The 6 in the thousandth place tells us to round the 6 to a 7 in the hundredth place.
m ≈501.57 g
The mass is about 501.57 grams.
Answer:
To find the mass using density and volume we just multiply them against each other which causes ml to cancel and just leaves us with grams which represents how much the item weights.



Therefore, our final answer is that our pencil weight 3.5 grams
<u><em>Hope this helps! Let me know if you have any questions</em></u>