12 protons in the nucleus
Since g is constant, the force the escaping gas exerts on the rocket will be 10.4 N
<h3>
What is Escape Velocity ?</h3>
This is the minimum velocity required for an object to just escape the gravitational influence of an astronomical body.
Given that the velocity of a 0.25kg model rocket changes from 15m/s [up] to 40m/s [up] in 0.60s. The gravitational field intensity is 9.8N/kg.
To calculate the force the escaping gas exerts of the rocket, let first highlight all the given parameters
- Mass (m) of the rocket 0.25 Kg
- Initial velocity u = 15 m/s
- Final Velocity v = 40 m/s
- Gravitational field intensity g = 9.8N/kg
The force the gas exerts of the rocket = The force on the rocket
The rate change in momentum of the rocket = force applied
F = ma
F = m(v - u)/t
F = 0.25 x (40 - 15)/0.6
F = 0.25 x 41.667
F = 10.42 N
Since g is constant, the force the escaping gas exerts on the rocket is therefore 10.4 N approximately.
Learn more about Escape Velocity here: brainly.com/question/13726115
#SPJ1
Answer:
a = 0.1 s b. 10 s
Explanation:
Given that,
The frequency in circular motion, f = 10 Hz
(a) Let T is the period of itsrotation. We know that,
T = 1/f
So,
T = 1/10
= 0.1 s
(b) Frequency is number of rotations per unit time. So,

Hence, this is the required solution.
The dog would have traveled a greater distance than the bug.
The car goes faster than the dog and will travel to the end of the road faster than the dog.
Hope this helps! Have a great day :)
(ps. brainliest, please?)
Answer:
2500 Newtons
Explanation:
If force equals the mass × acceleration then all should be quite simple
25kg is the mass of your car
100 m/s/s is the acceleration of you car
25kg • 100m/s/s = 2500 Newtons