Arrhenius' equation relates the dependence of rate constant of a chemical reaction to the temperature. The equation below is the Arrhenius equation

where k is the rate constant, T is the absolute temperature. As the temperature of the system increases, the rate constant also increases and vice versa.
Answer: "important and helpful" Show garret is paying close attention to her coach. Hope this help!
Answer:
a) speed when Jack sees the pot : 12.92 meters per second
b) height difference 163.115 meters
Explanation:
First to calculate te initial speed we use the acceleration formula:
a= v1-v0/t
Acceleration being gravity's acceleration (9.8 m/s^2)
v1 being the speed when Jill sees the pot
v0 when Jack sees it
and t the time between
Solving for v0 it would be
v1 - a*t = v0
replacing

For the second question we use the position formula setting y0 and t0 as the position and time when jack sees the pot. (and setting the positive axis downward I.E. one meter below jack would be 1m not -1m)
The formula is

replacing

Answer:
q=1.4*10^{-9}C
Explanation:
Given data:
charge on ruler = -14μC
Mass of tissue is 5 g
To Know the minimum charge, equate electrostatic force to weight
we have F = W
so
putting all value in equation,

solving for q

or q=1.4*10^{-9}C
My best guess would be sun because it is bright but is surrounded by shadows on all sides.