The amount of heat needed to melt 423 g of water at 0°C is 141282 J
The heat required to melt water can be obtained by using the following formula:
<h3>Q = mL </h3>
Q is the heat required.
L is the latent heat of fusion (334 J/g)
m is the mass.
With the above formula, we can obtain the heat required to melt the water as illustrated below:
Mass of water (m) = 423 g
Latent heat of fusion (L) = 334 J/g
<h3>Heat (Q) required =? </h3>
Q = mL
Q = 423 × 334
<h3>Q = 141282 J</h3>
Therefore, the amount of heat needed to melt 423 g of water at 0°C is 141282 J
Learn more: brainly.com/question/17084080
Answer:
A. New atoms are introduced in the molecules of the substance.
Explanation:
Pls, Pls, Pls can I have brainliest? I need 1 more brainliest to lvl up to expert
Answer:
Heterogenous
Explanation:
Mud is a mixture of water and soil
Answer:
d) The dilution equation works because the number of moles remains the same.
Explanation:
Let’s say that you have 1 mol of a solute in I L of solution. The concentration is 1 mol·L⁻¹. and <em>M</em>₁<em>V</em>₁ = 1 mol.
Now, you dilute the solution to a volume of 2 L. You still have 1 mol of solute, but in 2 L of solution. The new concentration is 0.5 mol·L⁻¹.
The volume has doubled, but the volume has halved, and <em>M</em>₂<em>V</em>₂ = 1 mol.
b) <em>Wrong</em>. The molar concentration changes on dilution.
c) <em>Wrong</em>. The volume changes on dilution.
a) <em>Wrong</em>, although technically correct, because if the moles don’t change, the mass doesn’t change either. However, the formula <em>M</em>₁<em>V</em>₁ has units mol·L⁻¹ × L = mol. Thus, in the formula, it is moles that are constant.