Answer:
Molecular formula
Explanation:
Molecular formula in the first place is required to understand which compound we have. We then should refer to the periodic table and find the molecular weight for each atom. Adding individual molecular weights together would yield the molar mass of a compound.
Then, dividing the total molar mass of a specific atom by the molar mass of a compound and converting into percentage will provide us with the percentage of that specific atom.
E. g., calculate the percent composition of water:
- molecular formula is
; - calculate its molar mass: [tex]M = 2M_H + M_O = 2\cdot 1.00784 g/mol + 16.00 g/mol = 18.016 g/mol;
- find the percentage of hydrogen: [tex]\omega_H = \frac{2\cdot 1.00784 g/mol}{18.016 g/mol}\cdot 100 \% = 11.19 %;
- find the percentage of oxygen: [tex]\omega_O = \frac{16.00 g/mol}{18.016 g/mol}\cdot 100 \% = 88.81 %.
Solid- particles are packed tightly together so they don’t move much
Liquid- particles are still close together but move freely
Gas- particles are neither close together nor fixed in place
Answer:
Biochemistry.
Explanation:
Biochemistry can be defined as the branch of science that deals with the study of the chemical processes, physio-chemical reactions and various substances that are found in living organisms such as animals, plants, and microorganisms.
Simply stated, biochemistry is a field in science that combines both the elements of biology and chemistry in order to study living organisms.
For example, all living organisms have the ability to engage in respiration in other to breathe in oxygen to stay alive. Thus, biochemistry helps us to understand respiration as a physio-chemical process that converts glucose into a form of energy (Adenosine Triphosphate-ATP) that is beneficial to all living organisms.
Hence, the chemistry of living things and living systems created a new combined field in science known as biochemistry.
Not sure gets hotter prolly
6.3 ×

In scientific notation, the numerical value without the exponent of 10 must be within the range from 1 to just below 10 (for example, 9.99...). In this case, 6.3 is already within this range, so we just have to multiply it by 1. To get a multiplier of 1 using base 10, we would have to raise 10 to the zeroth power.