We can store the copper sulphate solution in alumiun container, if cover on alumiun is present.
<h3>Can you store cuso4 in an aluminum container?</h3>
Aluminium is more reactive than copper so the Aluminium will displace copper sulphate from its solution by reacting with it but if there is cover on the aluminium then the alumium can't react with copper.
So we can store the copper sulphate solution in alumiun container.
Learn more about container here: brainly.com/question/11459708
Answer: Fe<em>(aq)</em>+S<em>(aq)</em>=FeS<em>(s)</em>
Explanation: The Sodium and Bromine are spectator ions because they don't react with anything, you can see this by writing the ionic equation like so:
1.) Molecular formula (given): FeBr2 (aq)+Na2S (aq)= FeS(s)+2NaBr(aq)
Each dissolved FeBr2 breaks up into one Fe with a charge of 2+ and two Br with a negative charge. This gives you:
Fe(aq)+ 2Br(aq)+Na2S(aq)=FeS(s)+2NaBr
2.) Now repeat what was shown with the other compounds in the given molecular formula, and pay attention to the states that each ion is in (solid, liquid, aqueous, gas) because this will give you the ionic equation, which from there you can get rid of any ions that don't change amount or state.
3.) Ionic formula: Fe(aq)+ <u>2Br(aq)</u>+<u>2 Na(aq)</u>+S (aq)=FeS(s)+<u>2 Na(aq)+2Br(aq)</u>
4.)When you've derived a total ionic equation (above), you'll find that some ions appear on both sides of the equation in equal numbers. For example, in this case two Na cations and two Br anions appear on both sides of the total ionic equation. What does this mean? It means these ions don't participate in the chemical reaction. They're present before and after the reaction. Nothing happens to them. So those are removed and you're left with the net ionic: Fe(aq)+S(aq)=FeS(s)
Hope this helps :)
Answer:

Explanation:
mass of Fe = 55.85 g
Molar mass of Fe = 55.85 g/mol
<u>Moles of Fe = 55.85 / 55.85 = 1</u>
mass of Cl = 106.5 g
Molar mass of Cl = 35.5 g/mol
Moles of Cl = 106.5 / 35.5 = 3
Taking the simplest ratio for Fe and Cl as:
1 : 3
The empirical formula is = 
Answer:
percentage by mass of each element in a compound.
Explanation:
Answer:
Sp3
Explanation:
Hydrocarbon can be defined as an organic compound that comprises of hydrogen and carbon only. Some examples of hydrocarbon are methane, butane, ethane, ethene, etc.
Hybridization can be defined as a phenomenon which involves the combination of two or more atomic orbitals to form the same number of hybrid orbitals, with each of the orbitals having the same shape and energy.
In Organic chemistry, ethane is considered to be a tetrahedral carbon and it's Sp3 hybridized.
A tetrahedral carbon typically comprises of four bonds that are 109. 5° apart while a linear carbon atom comprises of two (2) bonds that are 180° apart.
Hence, the molecule of ethane posses a Sp3 hybridization because it has four bonds arrange with a tetrahedral geometry.