T = 20 % : 20 / 100 = 0.2
m1 = solute
m2 = Solvent
T = m1 / m1 + m2
0.2 = 500 g / 500 g + m2
0.2 * ( 500 + m2 ) = 500
0.2 * 500 + 0.2 m2 = 500
100 + 0.2 m2 = 500
0.2 m2 = 500 - 100
0.2 m2 = 400
m2 = 400 / 0.2
m2 = 2000 g of water
hope this helps!
Not strong base and acid, not dissolved or not aqueous.
Answer: Option (3) is the correct answer.
Explanation:
Atomic number of lithium is 3 and its electronic distribution is 2, 1. So, to attain stability it will loose an electron and hence, it forms a single bond.
Atomic number of chlorine is 17 and it has 7 valence electrons. Hence, in order to attain stability it will gain one electron and therefore, it forms a single bond only.
Atomic number of nitrogen is 7 and its electronic distribution is 2, 5. Therefore, to attain stability it needs to gain 3 more electrons. Hence, a nitrogen atom is able to form a triple bond and also it is able to form a double bond.
Hydrogen has atomic number 1 and it attains stability by gaining one electron. Therefore, a hydrogen atoms always forms a single bond.
Atomic number of fluorine is 9 and its electronic distribution is 2, 7. To complete its octet it needs to gain one electron. Hence, a fluorine atom always forms a single bond.
Thus, we can conclude that out of the given options nitrogen is most likely to form multiple (double or triple) bonds.
The concentration of lead nitrate is 3.48 M.
<u>Explanation:</u>
The molarity can be found by dividing moles of sucrose by its volume in litres. We can find the number of moles of sucrose by dividing the given mass by its molar mass. Now we can find the moles as,
Here mass of Pb(NO₃)₂ is 380 g
Molar mass of Pb(NO₃)₂ is 331.2 g/mol
Number of moles = 
= 
= 1.15 moles
Volume in Litres = 330 ml = 0.33 L
Molarity = 
= 3.48 mol/L or 3.48 M
So the concentration of lead nitrate is 3.48 M.
Answer is C. in a reaction mole stays the same but mass changes and since it produced gas it means now we have less mass.